stc
OPENSTAR Test Lonsartium

OPENSTAR™
STC-S0010R1.0

Test Programming Language Specifications

©2004, STC, All rights reserved

stc

OP ENS TH R 3 Semiconductor

Test Consortium
DISCLAIMER OF WARRANTIES

THIS DOCUMENT, INCLUDING ANY SPECIFICATIONS AND OTHER INFORMATION OR MATERIALS
INCLUDED IN OR ACCOMPANYING THIS DOCUMENT (THE "MATERIALS"), ARE PROVIDED "AS IS.”
STC AND EACH OF ITS MEMBERS (INCLUDING ANY MEMBERS THAT MAY HAVE AUTHORED OR
CONTRIBUTED TO THE MATERIALS) MAKE NO REPRESENTATIONS OR WARRANTIES (EXPRESS,
IMPLIED OR OTHERWISE), INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, AND ALL

SUCH REPRESENTATIONS AND WARRANTIES ARE EXPRESSLY DISCLAIMED.
Without limitation of the generality of the foregoing, STC and each of its members caution that:

(1) The Materials are merely drafts of a provisional or experimental nature, and may contain inaccuracies, defects and
deficiencies that may not be corrected by STC or its members;

And

(2) Use of the Materials and compliance with the specifications included in the Materials ("Specifications") may
infringe third party patents and other intellectual property rights, and users of the Materials (not STC or its
members) are solely responsible for (a) identifying what, if any, patents may be relevant to use of the Materials or
compliance with the Specifications and (b) seeking and obtaining licenses of any such patents, if users determine
that such licenses are necessary or appropriate.

STC may (but is not obligated to) update or otherwise modify the Materials from time to time. If STC provides updates
or other modifications, it may, at its option, make them available in accordance with its then-current license for such
updates or other modifications. In addition, neither STC nor any of its members is committing to make available a
product (on a commercial basis or otherwise) complying with or otherwise using the Specifications.

LIMITATIONS OF LIABILITY

IN NO EVENT WILL STC OR ITS MEMBERS (INCLUDING ANY MEMBERS THAT MAY HAVE AUTHORED
OR CONTRIBUTED TO THE MATERIALS) BE LIABLE FOR ANY SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, OR ANY LOST REVENUE, LOST PROFITS OR LOST BUSINESS
(OR ANY LOSS OF DATA), HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY

(WHETHER BASED ON BREACH OF WARRANTY, BREACH OF CONTRACT, TORT, INDEMNIFICATION,
OR OTHERWISE), ARISING OUT OF OR OTHERWISE RELATED TO THE MATERIALS OR THE SUBJECT
MATTER THEREOF, INCLUDING THE FURNISHING, PRACTICING, IMPLEMENTATION, MODIFICATION
OR OTHER USE OF THE MATERIALS, EVEN IF STC AND/OR ITS MEMBERS WERE ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

IN ADDITION, IN NO EVENT WILL THE AGGREGATE LIABILITY OF STC AND ITS MEMBERS
(INCLUDING ANY MEMBERS THAT MAY HAVE AUTHORED OR CONTRIBUTED TO THE MATERIALS)
IN CONNECTION WITH THE MATERIALS OR THE SUBJECT MATTER THEREOF (REGARDLESS OF THE
THEORY OF LIABILITY, WHETHER BASED ON BREACH OF WARRANTY, BREACH OF CONTRACT,
TORT, INDEMNIFICATION, OR OTHERWISE) EXCEED THE AMOUNT OF THE MOST RECENT ANNUAL
DUES PAID BY THE PERSONS CLAIMING LIABILITY.

©2004, STC, All rights reserved

® = Semiconductor

OPENSTAR Test Consortium
INTRODUCTION ...ittiiiiiteee ettt e e et e e et e e ettt e e e e et e e e e et e e e eaa e s saaneeeesanaaeesaneeesnnnaarernnnns 1
1.1 THE TEST PROGRAMMING LANGUAGEcuuiiiiiieieiiiieeeiieee e e e et e et e e e e eeans 2

1.2 SPECIFICATION IDENTIFIERS

1.3 SYNTAX CONVENTIONScttttuuuieeeettttrtuaeeeeeeestttaaaeeesersnuseeessssstaaaeeeeessrnaaeeeeeenes
THE USER VARS SYNTAX 1.uitiitiiiiiiiieeeeetie e ettt eestteeesstaaeaessansesssnnsesstnaeeesnneasennnaeeennns 4
2.1 REQUIREMENTS UPON USER VARSuiiiiiiiiiiiiiieeeeeiiiiie e e e e eeeatns e e e e eeaaann e e e e s ennennnns 4
2.2 USAGE EXAMPLE ..ottt ettt e e e e et e e et e e et e eaaas 5
CUSTOM TYPES SYNTAX ettuieiitieeeitiee ettt e e eett e ee ettt eesetaaaeestaaeesatnnaasssanaesestaaaessnnaeees 7
3.1 REQUIREMENTS UPON CUSTOM TYPES.....ccitttiiiiiieeieiiiiieeeeeeeesins e e e e eeaenne e e e e e eenennnns 7
3.2 USAGE EXAMPLE ..outiiii e et e et e e et e et e e e et e eaans 8
THE LEVELS SYNTAX «.iittiieiiiiee et e ettt e e et e e e et ae e e et e e e e et e e e saaeeeestn e eeeta e aeennnaaeerans 9
4.1 REQUIREMENTS UPON LEVELS......utuiiiiiiiiiiiiiieeeeeeeeetiieeeeessessnsiaeeeesessssnnnseeesesssennnns 9
4.2 USAGE EXAMPLE ..ottt e et e e et e e et e e e et e e e e e e et e e eaanaas 9
THE SPECIFICATION SET SYNTAX etuuiiitiieeeettteeetieeeeetieeesetteesstaeesertaaeeestneeessnaeesees 12
5.1 REQUIREMENTS UPON SPECIFICATION SETS ..iuuuiiiitiieiiiiieeiiiieeieiieseiieesssieeessnnnesens 12
5.2 USAGE EXAMPLE ..uutiiiti ittt et e e et e e et e e et e e e et e e e aa e eeaan 12
TIMING SYNTAX 1.ieetueeiitee e et e e et eee e et e e e e et e e e et e e ee bt e eeeataeeestaeesstaeeeertneesssnnaeeeren 14
6.1 REQUIREMENTS UPON TIMING BLOCKSccuuiiiiiiiiiiiiiiiiciieeeee et ee et esaesaeeanaas 14
6.2 USAGE EXAMPLE ..uuuiiiiiiiiiiii e e e et e s e et e e e e e e et e e e e e e e e e ataa e e e e e seesaaaaeeeaaeees 16
TIMING IMAP SYNTAX 11tuiieeiieititiieieeeseettttinseseeeseattaaaeeeessestataseaeseessataieeeserssnnnns 18
7.1 REQUIREMENTS UPON TIMING MAPuuiiiiiiiiiie et 18

7.2 USAGE EXAMPLE

THE TEST CONDITION GROUP SYNTAX 1uuuieiitnieeiitieeerstiieeeseteesssneesssnaaeessnnseesannnaesees 20
8.1 REQUIREMENTS UPON TEST CONDITION GROUPS......cccvtuieiiiiieeeiieeeeieee et eeeeneeeens 20
8.2 USAGE EXAMPLE ..uutiiii ettt e et e e e e et e e e e eaan 21
TEST CONDITION SYNTAX ..eiituiiiiitieeetetiaeeeetteesseneeeettaeeestnaessnnnaesetaaeeernnaeerannaeeeees 24
9.1 REQUIREMENTS UPON TEST CONDITIONS ...cevvtttiuiieeerereeuinsaeeeseesennnsaeessessennnaaaaaeees 24

9.2 USAGE ExAMPLE

THE BIN DEFINITIONS AND COUNTERS SYNTAX c.uuiiiuiitiieiiiiiieeriierineesieesnsssneesaneens 26
10.1 REQUIREMENTS UPON BIN DEFINITIONS AND COUNTERS ...uuciiviieiitiieeiiieeeerieerananns 26
10.2 USAGE EXAMPLEuuiiiiiiiieii et e et e e et e e e e e e et e e e st e e eaaeeeeanaaes 27

THE PRE HEADERS SYNTAX 11t iittiiittiitiettettteettteiaesstessnstsnsestessnesstnserasssneeesnresans 30

©2004, STC, All rights reserved

% OPENSTAR T Ponductor
11.1 REQUIREMENTS UPON PRE HEADERS......uiituiiitiiiiiiieeieeei et e et s e e e st eeaneesaaeans 30
11,2 USAGE EXAMPLE ...cuuiiiitiieeiitieee e et e et e e et e e et e e et e e e st e e e et e e esaeeeeaaeeeeaneees 33

THE FLOWABLES AND FLOW SYNTAX ..ettuiieiiiieeitiieeeeetieee et eeeeteeeertaeeeeeta e eesananaeeees 36
12.1 REQUIREMENTS UPON FLOWABLES AND FLOWS ...ouiiiiiiiiiiciceeeee e 36
12.2 USAGE EXAMPLE ...ovttiiiii ettt sttt e e e e e e et e e e e e e e e e e e e e e e eaeaa s 38

RUN RESULT MAP SYNTAX 11uitiiiitiittiiieseeeteetittiasseeeeeeaattseeeasssastanasseaesesssnnnnnaeaeeens 40
13.1 REQUIREMENTS UPON RUN RESULT MAPSiiiiiiiiii ettt 40
13.2 USAGE EXAMPLE ...ovvtiiiiiiiiiietie sttt s ettt e e e e e e et e e e e e e e e e e e e e e earaa s 40

THE TEST PLAN SYNTAX 1 itiiiieiiiiie e et etie e e et e st e e e e tteeeeata e e s annn s e setaeeeesanseeeannnaeenen 42
14.1 REQUIREMENTS UPON TEST PLANS......uiiiiiiiiiiie et et e e 42
14.2 USAGE EXAMPLEuuiiiiiieiiiie et e et e e et e e et e e et e e e st e e et e e eaaaaees 44

APPENDIX A: TPL GRAMMAR IN BACKUS-NAUR NOTATIONccuiieiiiieeeeineeeeene e, 52
15.1 MAIN OT P L SYNTAX . ciittiiiitieee e ee e e e e e e e e e e et e e e st e e e eaaaeeestaeesstaeeeraaeees 53
15.2 TIMING FILE SYNTAX 1.iiitiiiiiiiii et e ettt et e e e e e e et e e et e e e et e e e et e e e st e e saaeeeeaaaaes 69
15.3 TIMINGMAP FILE SYNTAX . ..iitttttiitieeeieeitiiiaeeeeeeetiieeseeeeeesaaaaeeeessesassaesaeeseessnaaans 74

STC-S0010R1.0 ©2004, STC, All rights reserved

‘%% OPENSTAR

—

Semiconductor
Test Consortium

Revision

Date

Revised By

Description

1.0

SWG

Initial STC Release

©2004, STC, All rights reserved

/“""_-bt“gj}

_stc
OPENSTAR Thst Consartiom

1

Introduction

Preparatory to embarking upon first reading of this specification document the reader must
be familiar with the architecture and terminology of the OPENSTAR™ Tester Operating
System (TOS). Such familiarity is assumed in order to facilitate brevity and obviate the need
to introduce discussion already present in other texts.

TOS supports testing of a Device Under Test (DUT) through patterns. A pattern is a named
set of vectors. A vector is a signal waveform that spans the pins of a DUT and, potentially,
multiple cycles of the DUT tester machine. A vector is specified as a series of waveform
characters. A waveform character is an alphanumeric mnemonic for a signal waveform
segment. A waveform character is specified as a labeled set of predefined tester events
(governing waveform level changes) that are scheduled to occur at points in time. Waveform
characters are defined in waveform tables each of which provides its own decryption for a
waveform character in a pattern. Waveform tables are associated with a pattern via
Waveform(Table) Selectors. Waveforms are generic, they may apply both to pins that drive
and pins that compare (expect) values. Patterns are given context through test plans that
determine the semantic interpretation of pattern content, the states of the tester machine and
the execution flow of the subordinate tests that execute the patterns against the DUT.

This document shall present the framework that TOS provides for the developer of tests and
test plans and the framework specifications to which TOS developer, test and test plan
developers alike shall conform. Third party vendors providing customized extensions shall be
treated as developers.

This document shall refer to methods that are scoped to their containers using the familiar
notation:

container::method

and, in some cases, shall further specify the signature of the method for illustrative clarity. In
general, signatures shall not be presented and the reader should refer to class documentation
for the method container to obtain detailed information on method properties.

©2004, STC, All rights reserved 1

e

stc
OPENSTAR Test Lonsartium

1.1 The Test Programming Language

TOS provides support for the development of tests and test plans through a dedicated Test
Programming Language (TPL). TPL provides structure and hierarchy to test and test plan
through the following elements:

e User Vars: comprising collections of user variables and constants

e Specification sets: comprising collections of enumerated values and their indices
(selectors)

e Levels: specifying static states of the tester machine during parametrics and
calibrations

e Timings: specifying waveform characters, digital waveform transition placement
(edges), time periods of tester machine cycles

e Timing Maps: specifying correlation between pattern and timing

e Test Condition Groups: specifying an association of specification set, timing and
timing map

e Test Conditions: specifying an association of a test condition group and a selector
index for its specification set

e Bin definitions: specifying the hierarchical storage of test results

e Flows: specifying execution order of tests within a test plan

e Flowables: the base classes for flow and test classes providing for branch entry points
e Pre-headers: specifying signatures and customization of test methods

e Test plans: incorporating the previously specified features to administer execution of
the tests.

1.2 Specification ldentifiers

For simplicity specifications are straight enumerations within sections of this document. It is
recommended that a specification be referred to by its number and scoped to its document
section.

STC-S0010R1.0 ©2004, STC, All rights reserved 2

stc
OPENSTAR Test Gonsortium

1.3 Syntax Conventions

The TPL source file is a plain ASCII file. The general syntax for this file is presented for
which:

e Syntax words other than keywords are taken to be generic.

e Syntax keywords are indicated by boldface.

e The token |yptional(optional])shall denote that inclusion of the preceding(following)
syntax element is not mandatory and optional<defaute- Shall indicate any default value.

e The token |repeat (repeat|)shall denote that the preceding(following) syntax element may
be indeterminately repeated to generate a list.

e The separator token | shall denote mutually exclusive or.

For clarity, syntax presentation may be delimited by bracketed number, line and []. Unless in
boldface, these are not part of the pattern syntax. An element in a combinatorial set may be
highlighted in grey to provide a concrete example of how this element shall appear in code.

Alert: The syntax representation is illustrative of the usage of the native Backus-Naur
formulation (BNF) specified in Appendix A and includes semantic constraints not evident in
the BNF. The BNF is to be regarded as the formal and definitive specification of the syntax.

STC-S0010R1.0 ©2004, STC, All rights reserved 3

/‘ﬂ-_-bt‘-gj(

stc

Semiconductor

OP ENS TH R a Test Consortium

2

The User Vars Syntax

User Vars are the definitions of variables and constants used throughout a test plan. They
comprise Ihs declaration of the variable or constant as a strong type and rhs constant value or
algebraic expression.

2.1 Requirements upon User Vars

1. The syntax:

UserVars name | optional<name=_UserVars>

shall declare a User Var collection whose content is delimited by { and }

2. The uservars syntax:

COns'tloptional
[Integer | Unsignedinteger | String | Voltage | VoltageSlew | Current | Power |

Time | Length | Frequency | Resistance | Capacitance]
[variable =
number[[V | mV]lVoltage [/[S | ms | uS | nS | pS]|VoltageSlew

[A 1 mA | uAl|curent DV | mW | uW | nWllpower [S I mS | uS | nS | pS1|time [KM | M | dW | cM |
mM | uM | pM | TM]|Length [Hz | KHz | MHz | GHz | THZ]|Frequency [Ohms | KOhms | MOth]lResistance

[F 1 mF] uF | nF | pF | fF]|Capacitance];yoptional | expression;]

variable[size] = { [expression[, expression]hqwmpmmnﬂ L, Others:expression]kmmnm] |
Others=expression }

shall declare the constant or variable with designation variable,or rank size array with

designation variable[size] and type:

Integer or Unsignedlnteger or String or Voltage or VoltageSlew or Current or Power or

Time or Length or Frequency or Resistance or Capacitance

to carry the value number that

STC-S0010R1.0 ©2004, STC, All rights reserved 4

stc

Semiconductor

OP ENS Tn R a Test Consortium

s specified in integer, floating point or scientific notation

« has optional dimensionality, consistent with the variable type, expressed in SI notation
with u denoting p

or result of the expression expression where expression comprises mathematical operators and
operands of form:

number, dimensioned or dimensionless
variable[array_index] denoting the element array_index of array variable variable

and shall define the meaning of type, variable and expression in all subsequent references

3. The uservars syntax:
type (variable)

shall redefine the type of the variable variable to be type

4. The syntax:
[user_var_]|optional Variable
shall represent the variable declared in the

User Var user_var, current User Var or yservars

5. The syntax:
container_name: :function([expression [, expression] |repeat,optional

shall return the value of the user function function, declared in container_name, for the
argument(s) expression.

6. The declarations for user vars shall reside in files having extension usrv

2.2 Usage Example

The following is a usage example of the user vars syntax:

STC-S0010R1.0 ©2004, STC, All rights reserved 5

stc

Semiconductor

OP ENS TH R a Test Consortium
#

Version 1.0;

#

This UserVars collection declaration declares a set of
globally available variables and constants.

#

UserVars

Some constant Integer globals used in various places.
Const Integer MaxInteger = 2147483647;
Const Integer MinInteger = -2147483647-1;

Smallest value such that 1.0 + Epsilon != 1.0
Const Double Epsilon = 2.2204460492503131e-016;

Some important constants related to Double
Const Double MaxDouble = 1.7976931348623158e+308;

Const Double MinDouble = - MaxDouble;
Const Double ZeroPlus = 2.2250738585072014e-308;
Const Double ZeroMinus = - ZeroPlus;

STC-S0010R1.0 ©2004, STC, All rights reserved

e

OPENSTAR Tost Lonsorium
3

Custom Types Syntax

Custom types are compound types comprising variables whose types are the base types of
TPL.

3.1 Requirements upon Custom Types

1. The syntax:
CustomType custom_type

shall declare a custom type with designation custom_type and content delimited by { and }

1. The custom type syntax:
[type | custom_type] variable;

shall declare the variable variable whose type is type or custom_type and where custom_type
is the name of a previously defined custom type.

2. The syntax:

custom_type->variable

shall represent the variable variable in custom type custom_type

3. The syntax:
custom_type object{ [custom_type—>]|0pﬁ0na1 variable=expression
[, [custom_type->] |0ptiona1 variable=expression] |repeat }

shall initialize the object, object, of custom type custom_type by assignment of expression(s)
to variable(s)

4. The declarations for custom type shall reside in files having extension ctyp

STC-S0010R1.0 ©2004, STC, All rights reserved 7

stc

Semiconductor

OP ENS TH R a Test Consortium

3.2 Usage Example

The following is a usage example of the custom types syntax:

Version 1.0;

CustomType Foo

String S1;
Integer I1;
String S2;

CustomType Bar

Foo Fool;
String S1;
Foo Foo2;

STC-S0010R1.0 ©2004, STC, All rights reserved

——— 9

),

stc
OPENSTAR Test Lonsartium

4

The Levels Syntax

Levels are sets of assignments of values to measurement parameters used by parametric and
calibration tests.

4.1 Requirements upon Levels

1. The syntax:

[Levels | DCParametrics | Calibration] name

shall declare a levels, DC parametrics or calibration with designation name whose content is
delimited by { and }

2. The levels, DC parametrics or calibration syntax:
[[Delay | MinDelay] expression ;]]|optional
pin { parameter = [expression | Slew(expression, expression)];|repeat} reneat

shall assign the value of expression or Slew to the parameter parameter of pin(group) pin with a
preceding or following delay of:

expression||v|inDelay < delay_< expression|De|ay

3. The levels syntax shall reside in files having extension Ivl.

4.2 Usage Example

The following is a usage example of the levels syntax:

STC-S0010R1.0 ©2004, STC, All rights reserved 9

stc

Semiconductor

OP ENS TH R a Test Consortium

B oo m o ff
File myDUTLevels.lvl

Version 1.0;

Import CPUXResources.rsc;
Import CPUXpindesc.pin;

Levels CPU XLevels

#
Specifies pin-parameters for various pins and
pin groups using globals and values from
the specification set.

#
#
#
#
The order of specification is significant.

Pin parameters will be set in order from

first to last in this Levels section, and

from first to last for each pin or pin-group
subsection.

#

#

#

#

#

#

I

From the imported pin description file cpuXpins.pin,
the InPins group is in the “dpin” resource. From the
imported resource definition file cpuXresources.rsc,
the “dps” resource has parameters named VIL and VIH.

nPins { VIL = v_il; VIH = v_ih + 1.0; }

The following statement requires a delay of 10 uS after
the call to set the InPins levels. Actual delay will be
a small system defined range around 10.0E-6:

10.0E-6 - delta <= actual <= 10.0E-6 + delta

Delay 10.0E-6;

#

For the OutPins, the levels for the parameters
VOL and VOH are specified.

#

OutPins { VOL = v.ol / 2.0; VOH = v_oh; }

The clock pin will have special values.
Clock { VOL = 0.0; VOH = v_ih / 2.0; }

A Delay of 10 uS after the call to set Clock levels.
This is a minimum delay, that is guaranteed to be for
at least 10.0 uS, though it may be a little more:

10.0E-6 <= actual <= 10.0E-6 + delta

MinDelay 10.0 uS;

#

The PowerPins group is in the “dps” resource. Pins of this
pin group have special parameters:

PowerPins

VForce reaches its final value of 2.0 V from its
present value in a ramp with a Voltage Slew Rate
of +.01 Volts per Second.
VForce = Slew(0.01, 2.0 V);

VBumpMode can be Enable or Disable. This is to

allow testing at various voltage ranges.
VBumpMode = Disable;

STC-S0010R1.0 ©2004, STC, All rights reserved

10

stc

Semiconductor

OP ENS TH R a Test Consortium

As seen above, each Levels block is made up of a number of levels items, each of which
specifies parameters for a pin or pin group. Each levels item can specify a number of
resource parameters.

The Levels declaration syntax is also used to declare values for DCParametrics and
Calibration. These have exactly the same syntax as a Levels declaration, and the same
runtime semantics.

STC-S0010R1.0 ©2004, STC, All rights reserved

11

e

stc
OPENSTAR Test Lonsartium

S

The Specification Set Syntax

Specification Sets are the definitions of variables, finite sets of discrete values held by each
variable and a set of named indices serving as selectors of elements of the sets.

5.1 Requirements upon Specification Sets

1. The syntax:
SpecificationSet name|optional (selector |repeat)

shall declare a Specification Set named name or unnamed, having indices named selector |repeat
and content delimited by { and }

2. The specification set syntax:
type variable = [expression][, expression]|optionalrepeat;|repeat
shall declare the strongly typed variable variable to hold the list of values
expression[, expression]|repeat Where:
e the size of the list is equal to the number of indices selector |repeat

e or the size of the list is less than the number of indices and the last value in the list shall
span the remainder of the list

3. The specification set syntax shall reside in files having extension spec.

5.2 Usage Example

The following is a usage example of the specification set syntax:

STC-S0010R1.0 ©2004, STC, All rights reserved 12

stc

@6 PENSTAR Semiconductor

Test Consortium
B o o o mC .

File Aaa.spec

Version 1.0;
Import limits.usrv;
SpecificationSet Raa(sl, s2, s3, s4)

Double xxx = 1.0, 2.0, 3.0, 4.0;

Integer yyy 10, 20, 30, 40;

Integer zzz MaxInteger - xxXx,
MaxInteger - xxx - 1,
MaxInteger - xxxX - 2,
MaxInteger - XXX;

The following declaration associates a single
value, which will be chosen regardless of the
selector. It is equivalent to:

Integer www = yyy + 222, YYY + 2ZZZ, YYY + 2ZZ, YYY + 2ZzZ
Integer www = yyy + 2ZzZzZ;

}

The above Specification Set with the selector s3 will make the following associations:

XXX = 3.0;
yyy = 30;
zzz = MaxInteger - xxx - 2;

WWW =YYy + Z7Z;

STC-S0010R1.0 ©2004, STC, All rights reserved

13

e

stc
OPENSTAR Test Lonsartium

6

Timing Syntax

Timing blocks define the waveform characters used to encrypt waveform segments within
vectors of a pattern. Each waveform character is defined as a set of events occurring at
specified points in time that determine waveform voltage transitions and for which hardware
dedicates resources referred to as edge resources.

6.1 Requirements upon Timing Blocks

1. The syntax:

Version version;

shall specify the TOS version, version.

2. The syntax:
[1mport [[file.] |opti0nal block] [, [file.] |optional block] |optiona1,repeat ;1 |optiona1,repeat

shall insert the timing block(s), block, contained in timing file(s), file

3. The syntax:
Timing block

shall declare the timing block, block, whose content is delimited by { and }

4. The timing block syntax:

CommonSection

shall declare the common section of the timing block whose content is delimited by { and }

5. The timing block common section syntax:

(1) Domain domain_name [DataRate data_rate]

{

STC-S0010R1.0 ©2004, STC, All rights reserved 14

stc
®OPENSTFIR” oot Uamaortiom
(2) PeriodTable { [period_name { expression; }]|repeat}
(3) Pin pin
{
(D) [DefaultState=[ForceDown | ForceUp | ForceOff | D | U | Z];]|optional
) WaveformTable wft_name
{
®) { wf_char[/wf_char] |optional,repeat [Mdr_cycle]|optional
t_(r7n)e { CIRWIZIPILIXIXIDIVI W EIVITZ VI ZIPILIXIXIDIVE FTh] VD] |optional.repeat @
i
®) [. E[dgel|optional Number [/E[dgel|optional MUMBEr] |optional,repeat] |optional 3 1lrepeat 3
reneat }
reneat }
PinOptions
{
(©)) CompareMode=[Single | Multi]; |repeat
ontional |
reneat }
}
shall declare:
(1) the timing domain to be domain_name with data rate data_rate
(2) the period period_name with value expression
(3) the pin(group) pin to have, at multi data rate cycle mdr_cycle:
4) default state: ForceDown or ForceUp or ForceOff or D or U or Z
(%) waveform table wft_name defining:
(6) waveform character wf_char to be the event: DJUIZ|PILIXIXIDIVITh]t]V

at time time, where time is an expression, and the edge resource number that shall
generate the event

9) high-impedance (Z) comparator enabling CompareMode=Multi in addition to high and low.

Multiple declarations of CompareMode are ignored except in the case of the last declaration.

6. The timing syntax shall reside in files having extension tim.

STC-S0010R1.0 ©2004, STC, All rights reserved 15

stc

Semiconductor

OP ENS TH R a Test Consortium

6.2 Usage Example

The following is a usage example of the timing syntax:

#
Timing file

Version 1.0;
Import pindesc.pin;
Timing basic_ functional
CommonSection
Domain default # The default time-domain
PeriodTable
The variable tper prog referenced here is
specified in a SpecificationSet
Period per0 {60nS;}
Period perl {tper prog;}
Period per2 {120nS;}
Period per3 {tper prog * 3;}
Pin SIG
WaveformTable seql
0/1 D/Ue@l0nS, E1/El; De30nS, E2; Z@45nS, E3;
d/u { D/Uel2nS, E1/El; Ue32nS, E2; Z@42nS, E3;
L/H L/He@el7nS, E5/E6;
m/n { L/H@l5nS, E5/E6;
WaveformTable seqg2
D@22nS, E1; Ue42nS ,E2; Z@52nS, E3;
Ue22nS, E1; D@42nS ,E2; Z@52nS, E3;

L@37nS, E5;
H@37nSs, E6;

TnHEHR o

WaveformTable seqg3

D@elOnS, El1l; De@30nS, E2; Z@45nS, E3; l
U@elOnS, El1; De@30nS, E2; Z@45nS, E3;
L@l7nS, E5;

Hel7nSs, E6;

QoW

}

WaveformTable seqg4

L L@l5nS, E5;
H H@l5ns, E6;

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconduct
%OPENSTFIR” Test Lonsortium
Pin CLK
WaveformTable seql

{ 1 { ve2ons, E1; D@40nS, E2; }}

}

Pin FASTCLK

This illustrates a faster clock.
WaveformTable seql

{
}

Pin DATA

{1 { veions, E1; D@20nS, E2; U@40nS, E3; D@50nS, E4; }}

This illustrates the Window Compare.
WaveformTable ReadCycle

L l@l0nS, E5; x@48nS, E6;
H h@lonS, E5; x@48nS, E6;

STC-S0010R1.0 ©2004, STC, All rights reserved

/‘ﬂ-—-bt‘-gj}

stc
OPENSTAR Test Lonsartium

7

Timing Map Syntax

Timing maps provide named mappings between a pattern and a waveform table, defining its
waveform characters, and the period to be used for each cycle.

7.1 Requirements upon Timing Map

1. The syntax:

Version version;

shall specify the TOS version, version.

2. The syntax:

[1mport [[file -]loptional map] [, [file.] |optional map] |optiona1,repeat ;1 |optiona1,repeat

shall insert the timing map, map, contained in timing file, file
3. The syntax:

TimingMap map
shall declare the timing map, map, whose content is delimited by { and }

STC-S0010R1.0 ©2004, STC, All rights reserved 18

stc

Semiconductor

OP ENS TH R a Test Consortium

4. The timing map syntax:
Domain domain_name

{

WaveformMap { {pin [, Pinl|optionalrepeat WF_selector period { wf_table [,
wf_table] |optional,repeat}
}

shall generate in timing domain domain_name the mapping pin(group)(s) pin to period period and
waveform table(s) wf_table with the designation wf_selector.

5. The timing map syntax shall reside in files having extension tmap.

7.2 Usage Example

The following is a usage example of the timing map syntax:

#

Timing Map file
#

Version 1.0;
Import pindesc.pin;

TimingMap myGalaxyTimingMap

Domain default

WaveformMap
PinFormat { SIG, CLK, FASTCLK, DATA }
wfsl, pero, seqgl, seqgl, segl, ReadCycle
wfs2, peroO, seq2, seqgl, seqgl, ReadCycle
wfs3, pero, seg3, seqgl, segl, ReadCycle
wfs4, per2, seql, seqgl, seqgl, ReadCycle

STC-S0010R1.0 ©2004, STC, All rights reserved 19

e

stc
OPENSTAR Test Lonsartium

8

The Test Condition Group Syntax

Test condition groups are associations of specification sets, levels, timings and timing maps.

8.1 Requirements upon Test Condition Groups

1. The syntax:

TestConditionGroup name

shall declare a test condition group with designation name and content delimited by { and }

2. The test condition group syntax:

specification_set_name; | specification_set

shall reference the previously defined and named specification set specification_set_name or
declare an unnamed specification set specification_set

3. The test condition group syntax:

levels_name; | levels

shall reference the previously defined and named levels, DC parametric or calibration
levels_name or declare an unnamed levels, DC parametric or calibration 1evels

4. The test condition group syntax:

Timing { [Timing=timing_block [TimingMap:timing_map]Lmﬁmml]
| [TimingMap=timing_map Timing=timing_block] }
shall reference the timing block timing_block and timing map timing_map where each may be

expressed in form [filename:]|optionat name. Example: timing_file.tim:timing_block_1

5. The test condition group syntax shall reside in files having extension tcg

STC-S0010R1.0 ©2004, STC, All rights reserved 20

stc

@b PENSTAR Semiconductor

Test Consortium

8.2 Usage Example

The following is a usage example of the test condition group syntax:

Version 1.0;

Import myvars.usrv;
Import myDUTLevels.l1lvl;
Import edges.spec;
Import simple.tim;
Import simple.tmap;

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

OP ENS TH R a Test Consortium

TestConditionGroup TCG1l

This Local SpecificationSet uses user-defined selectors
"min", "max" and "typ". Any number of selectors with any
user defined names is allowed.

The specification set specifies a table giving values for
variables that can be used in expressions to initialize
timings and levels. The specification set below defines
values for variables as per the following table:
min max typ

Vv_cc 2.9 3.1 3.0

v_ih VInHigh + 0.0 VInHigh + 0.2 VInHigh + 0.1

v_il VInLow + 0.0 VInLow + 0.2 VInLow + 0.1

A reference such as "VInHigh" must be previously defined
in a block of UserVars.

Thus, i1f the "max" selector was selected ina functional
test, then the "max" column of values would be bound to
the variables, setting v_cc to 3.1, v_ih to vInHigh+2.0
and so on.

Note that this is a local specification set, and has no
name.
pecificationSet (min, max, typ)

~nHEHHFEHEHFEFEHHFFEHHFHEHFEFHFEFHFFEHHFHE

Minimum, Maximum and Typical specifications for

voltages.

Voltage v.cc = 2.9, 3.1, 3.0;

Voltage v_ih = MyVars.VInHigh + 0.0
MyVars.VInHigh + 0.2
MyVars.VInHigh + 0.1

Voltage v_il = MyVars.VInLow + 0.0,
MyVars.VInLow + 0.2,
MyVars.VInLow + 0.1;

’

’
7

Minimum, Maximum and Typical specifications for
leading and trailing timing edges. The base
value of 1.0E-6 uS corresponds to 1 nanosecond,
and is given as an example of using scientific
notation for numbers along with units.
Time t le = 1.0E-6 uS,

1.0E-6 uS + 4.0 * MyVars.DeltaT,

1.0E-6 uS + 2.0 * MyVars.DeltaT;
Time t_te = 30ns,

30ns + 4.0 * MyVars.DeltaT,

30ns + 2.0 * MyVars.DeltaT;

}

Refers to the CPU XLevels imported earlier. It

1is one of possibly many levels objects that have been
imported from the above file.

Levels CPU XLevels;

Refers to file simple.tim containing the single timing

STC-S0010R1.0 ©2004, STC, All rights reserved

22

stc

@6 PENSTAR Semiconductor

Test Consortium

Timl, and simple.tmap contianing the single timing
map TMapl
Timings

Pick up Timl from simple.tim
Timing = Timl;

Pick up TMAP1l from simple.tmap
TimingMap = TMapl;

}

Another test condition group
TestConditionGroup TCG2

ClockAndDataEdgesSpecs i1s a specification set which
is available in the edges.specs file. Assume it has
the following declaration:
SpecificationSet ClockAndDataEdgesSpecs (min, max, typ)

Time clock le

#

#

10.00 usS, 10.02 uS, 10.01 uS;
Time clock te

#

#

#

20.00 uS, 20.02 uS, 20.01 usS;
10.0 us, 10.2 us, 10.1 usS;
30.0 us, 30.2 us, 30.1 us;

Time data le
Time data_ te

A SpecificationSet reference to this named set is below:
SpecificationSet ClockAndDataEdgesSpecs;

An inlined levels declaration. Since the associated
specification set (above) does not have variables such
as VInLow, VInHigh, VOutLow and VOutHigh, they must
resolve in the default UserVars collection.
evels

~HB HFHFHH

InPins { VIL = VInLow; VIH = VInHigh + 1.0; }
OutPins { VOL = VOutLow / 2.0; VOH = VOutHigh; }

Refers to file simple.tim containing the single timing
Timl, and simple.tmap contianing the single timing

map TMapl

Timings

Pick up Timl from simple.tim
Timing = Timl;

Pick up TMAP1 from simple.tmap
TimingMap = TMapl;

}

In the above example, the test condition group TCG1 describes a specification set with three
selectors named “min”, “typ” and “max”. There can be any number of distinct selectors.
Within the body of the specification set, variables v_il, v_ih, t_le and t_te are initialized
with triples of values, corresponding to the selectors. So in the above example, an instance
of TCG1 with the selector “min” will bind the variable v_i1 with the first numeric value,

(VInLow+0.0).

STC-S0010R1.0 ©2004, STC, All rights reserved 23

 me— ,,.;I 9
/

stc
OPENSTAR Test Lonsartium

9

Test Condition Syntax

Test conditions comprise a test condition group and a selector name that determines the
specification set values applied to the test condition group.

9.1 Requirements upon Test Conditions

1. The syntax:

TestCondition name

shall declare a test condition with designation name and whose content is delimited by { and }

2. The test condition syntax:

[TestConditionGroup tcg_name; [Selector = selector_name;]|optiona1]|repeat
|

[Selector = selector_name; TestConditionGroup tcg_name;] |repeat

shall reference the previously defined test condition group tcg_name and specify its specification
set selector selector_name

3. The test condition syntax shall reside in test plans

9.2 Usage Example

The following is a usage example of the test condition syntax:

STC-S0010R1.0 ©2004, STC, All rights reserved 24

OPENSTAR

TestCondition TCMin

TestConditionGroup

Selector = min;

TestCondition TCTyp

TestConditionGroup

Selector = typ;

TestCondition TCMax

stc

Semiconductor
Test Consortium

TCG1;

TCG1;

TestConditionGroup = TCGI1;

Selector = max;

#

Declare a FunctionalTest “MyFunctionalTest” that refers to three
Test Condition Group instances.

#
Test FunctionalTest

MyFunctionalTest

Specify the Pattern List

PList = patlAlis

Any number of
TestCondition =
TestCondition =
TestCondition =

STC-S0010R1.0

t;

TestConditions can be specified:
TCMin;
TCMax;
TCTyp;

©2004, STC, All rights reserved

25

e

OPENSTAR Tost Lonsorium
10

The Bin Definitions and Counters Syntax

Bin definitions generate a hierarchical structure serving as repository for test results. Bin
definitions comprise groups of bins each containing bins that may parent other bins or serve
as terminal leaf node daughter bins. Parent and daughter bins need not belong to the same bin
group. Counters are integers that may be incremented by one.

10.1 Requirements upon Bin Definitions and Counters

1. The syntax:
BinDefs

{

repeat| BinGroup group_name { [[Bin | LeafBin] bin_name bin_id : bin_desc [, parent]|0ptiona1;]

| rep eat}

}

shall define bin group group_name to contain the Bin or LeafBin named bin_name with integer
identifier bin_id, description string bin_desc and previously defined parent bin parent

2. The syntax:

SortBinGroup = bin_name;

shall specify that the contents of bin group group_name and only group_name shall be used.
3. The syntax:
Counters { name[, name] |Opﬁona1, repeat

shall declare a counter whose designation is name

4. The bin definitions syntax shall reside in files with extension bdefs

STC-S0010R1.0 ©2004, STC, All rights reserved 26

stc

Semiconductor

OP ENS TH R a Test Consortium

10.2 Usage Example

The following are usage examples of the bindef and counter syntax:

Version 1.0;
BinDefs

The PassFailBins are an outermost level of

bins. They are not a refinement of any other
bins.

BinGroup PassFailBins

Bin Pass 0: “Count of passing DUTS.”;
Bin Fail 1: “Count of failing DUTS.”;

The HardBins are a next level of refinement.
HardBins are a refinement of the PassFailBins
declared just before.

BinGroup HardBins

Bin Pass3GHz1l0: “DUTs passing 3GHz”, Pass;

Bin Pass2 8GHz 11: “DUTs passing 2.8GHz”, Pass;
Bin Fail3GHz1l2: “DUTs failing 3GHz”,Fail;

Bin Fail2 8GHz 13: “DUTs failing 2.8GHz”, Fail;
Bin Failleakage 14: “DUTs failing leakage”, Fail;

}

The SoftBins are a next level of refinement.

SoftBing are a refinement of HardBins declared
just before.

BinGroup SoftBins

LeafBin PassAll13GHz 20:

“Good DUTs at 3GHz”,Pass3GHz;
LeafBin FailCache3GHz 21:

“Cache Fails at 3GHz"”, Fail3GHz;
LeafBin FailSBFT3GHz 22:

“SBFT Fails at 3GHz”, Fail3GHz;
LeafBin FaillLeakage3GHz 23:

“Leakages at 3GHz”, FailLeakage;
LeafBin PassAll2 8GHz 24:

“Good DUTs at 2.8GHz”, Pass2_ 8GHz;
LeafBin FailCache2 8GHz 25:

“Cache Fails at 2.8GHz”, Fail2 8GHz;
LeafBin FailSBFT2 8GHz26:

“SBFT Fails at 2.8GHz”, Fail2 8GHz;
LeafBin FailLeakage2 8GHz 27:

“Leakages at 2.8GHz", FailLeakage;

}

The keyword SortBinGroup identifies one of the preceding

BinGroup’s as the one that is used for the sorter. The bin
numbers of bins of that group will be used by the hardware
for sorting.

SortBinGroup = HardBins;

STC-S0010R1.0 ©2004, STC, All rights reserved

27

'%% OPENSTAR

STC-S0010R1.0

©2004, STC, All rights reserved

e
stc

Semiconductor
Test Consortium

28

stc

Semiconductor

OP ENS TH R a Test Consortium

H o
File testplan.tpl

Various declarations

Counter declarations. Counters are variables that are
incremented during the execution of a test. They are
UnsignedIntegers that are initialized to zero.
Counters {PassCount, FailCount}

A Flow and a FlowItem in it that uses Counters
Flow FlowTestl

FlowItem Xxx SomeTest
Result 0

IncrementCounters PassCount;

}

Result 1

IncrementCounters FailCount;

STC-S0010R1.0 ©2004, STC, All rights reserved

29

stc
OPENSTAR Test Gonsortium

11

The Pre Headers Syntax

The pre-headers syntax provides custom extensibility to TPL and declaration of TPL classes,
methods and arguments that is used for compiler validation of proper invocation of a TPL
method and method introspection. TPL classes may be flowables whose object instantiations
determine execution flow of tests within a test plan or tests whose object instantiations
execute patterns against the DUT.

11.1 Requirements upon Pre Headers

1. The syntax:

[TestClass | FlowableClass]=[class_name | Test] TestClassDLL=dll_name
PublicBases [base_name | Test][, base_name | Test] |optional,repeat

shall declare the test (flowable) class Test(class_name) whose implementation resides in
di1_name.dll and which derives from the class(es) base_name and/or Test

2. The syntax:
[Enum | ExternalEnum] enum = member[, member]|0ptional,repeat

shall define the enumerated list enum of values member to be globally accessible in the test plan.

STC-S0010R1.0 ©2004, STC, All rights reserved 30

/‘ﬂ-_-bt‘-gj(

stc

@b pe NSTH R - Semiconductor

Test Consortium

3. The test/flowable class syntax:
(1) Parameters
{
(2) [[user_type | Integer | Unsignedinteger | String | Voltage | VoltageSlew | Current

| Power | Time | Length | Frequency | Resistance | Capacitance | TestCondition |

PatternList]
(€)) param_name
{
(C)) Cardinality=[1 | 0-1 | 1-n | 0-n];
5) | Attribute=attribute;
(6) | SetFunction=|optional _name [Implement]|optional ;
@) | Default = expression;
(3) | Description = “descriptor”; | GuiType = “type”; | Choices = LISt[(eneat

¥
I
(€©)) ParamGroup group_name
{
(10) Cardinality=[number | 0-1 | 1-n | 0-n];
(11) | Attribute=attribute;
(12) | SetFunction=accessor [Implement]hmﬁmml; reneat

(13) [[user_type | Integer | Unsignedinteger | String | Voltage | VoltageSlew | Current

| Power | Time | Length | Frequency | Resistance | Capacitance | TestCondition |
PatternList]

14 param_name { Description = description; }

}

reneat

(15) Enum enum = member[, member]hmkmdﬁqmm

}
(16) CodeTemplate

shall declare a parameter(s) to have:

(2)type: user_type| Integer|Unsignedinteger|String]|Voltage|VoltageSlew]|Current|Power]|

Time|Length|Frequency|Resistance|Capacitance]|TestCondition|PatternList
where user_type is a custom type

(3) designation param_name

STC-S0010R1.0 ©2004, STC, All rights reserved 31

stc

Semiconductor

OP ENS TH R a Test Consortium

(4) singularity of 1 or optionality, 0-1, membership in a list with at least one element, 1-n,or
membership in a list that may be empty indicating optionality
(5) corresponding C++ class member variable attribute

(6) corresponding C|++ set accessor method accessor for which TOS shall provide default and
minimal implementation iff implement is specified

(7) default value expression

(8) string descriptor descriptor, GUI type type,type

(9) membership of the parameter group group_name

(15) status as a finite enumeration enum of permissible values member

(16) Inlined C++, codeTemplate, delimited by CPlusPlusBegin and CPlusPlusEnd

STC-S0010R1.0 ©2004, STC, All rights reserved 32

stc

Semiconductor

OP ENS Tn R a Test Consortium

4. The syntax:

Functions = container_name;

shall declare the container container_name spanning a set of user functions

5. The user function syntax:
[Void | Integer | Unsignedinteger | String | Voltage | VoltageSlew | Current

| Power | Time | Length | Frequency | Resistance | Capacitance]
function_name(argument[[array_size]] |0ptiona1 [, argument[[array_size]] |0ptiona1] |repeat)

shall declare the user function function_name with return type Void| Integer|Unsignedinteger|
String|]Voltage|VoltageSlew|Current]|Power|Time|Length|Frequency|Resistance]Capacitance

and argument(s) argument where argument is strongly typed to be Integer|Unsignedinteger]
String|Voltage|VoltageSlew|Current]|Power|Time]|Length|Frequency|Resistance|Capacitance

and may be an array of size array_size

6. The pre-headers syntax for classes shall reside in files with extension ph

7. The pre-headers syntax for custom functions shall reside in files with extension fh

11.2 Usage Example

The following is a usage example of the pre headers syntax:

Version 1.0;

#

OTPL Parameterization specification pre-header for FunctionalTest
#

Import Testl.ph; # For base class Testl

Import Test2.ph; # For base class Test2

TestClass = MyFunctionalTest; # The name of this test class
PublicBases = Testl, Test2; # List of public base classes

The parameters list:

Parameters

The following declaration specifies that a MyFunctionalTest has
- a parameter of OTPL type PList

- [represented by C++ type OASIS::PatternTree]

- stored in a member named m pPatList

- a function to set it named setPatternTree.

- a parameter description for the GUI to use as a tool tip

FHHEHFHH

STC-S0010R1.0 ©2004, STC, All rights reserved 33

stc

Semiconductor

OP ENS TH R a Test Consortium

PList PListParam

Cardinality = 1;

Attribute = m pPatList;

SetFunction = setPatternTree;

Description = “The PList parameter for MyFunctionalTest”;

The following declaration specifies that a MyFunctionalTest has

- 1 or more parameters of OTPL type TestCondition

- [represented by C++ type OASIS::TestConditionl]

- stored in a member named m_testCondnsArray

- a function to set it named addTestCondition.

- a parameter description for the GUI to use as a tool tip
The [implement] clause causes the translation phase of OTPL to
generate a default implementation of this function.

estCondition TestConditionParam

~— 3 = F

Cardinality = 1-n;

Attribute = m_testCondnsArray;

SetFunction = addTestCondition [Implement] ;

Description = “The TestCondition parameter for MyFunctionalTest”;

File MyFunctions.fh
#

OTPL Parameterization specification pre-header for MyFunctions
Version 1.0;
Functions = MyFunctions; # The name of the DLL which contains the

following functions. The dLL should not
contain the extention

Declare the following C++ function in the

MyFunctions namespace to determine the minimum

of two values.

// Return the minimum of x, y

double MyFunctions::Min

(ITestPlan* pITestPlan,int& x, int& y);
Integer Min(Integer x, Integer y);

Declare the following C++ function in the

UserRoutines namespace to return the average of

an array.

// Return the average of the array

double MyFunctions::Avg

(ITestPlan* pITestPlan, double* a, const int a size);
The C++ function will be called with a and a’Length
Double Avg (Double a[], Integer a size);

Declare the following C++ function in the

UserRoutines namespace to print the dut id

and a message

// Return the average of the array

double MyFunctions::Print

(ITestPlan* pITestPlan, String* msg) ;

The C++ function will be called with a and a’Length
Void Print (String msg) ;

STC-S0010R1.0 ©2004, STC, All rights reserved 34

'%% OPENSTAR

STC-S0010R1.0

©2004, STC, All rights reserved

e
stc

Semiconductor
Test Consortium

35

e

stc
OPENSTAR Test Lonsartium

12

The Flowables and Flow Syntax

Flowables are generic base types from which test objects and test execution flow objects may
be subclassed and initialized by argument list. A further category of flows is dedicated to
execution on the system controller.

Flows are named sets of flow items. Flow items are named mappings of flowable return code
(result) to actions that increment values, execute functions, set properties and then branch to
another part of the test plan. Flow items execute the flowable object whose return code is
mapped.

12.1 Requirements upon Flowables and Flows

1. The syntax:
[Flowable | Test] type object

shall instantiate a flowable or test object named object of type type whose argument assignment
list is delimited by { and }

2. The flowables syntax:
argument=value; | group{ argument=value [, argument=value] |repeat }
shall assign value to the argument argument of object where:
e value is a string, signed or unsigned integer or floating point number

e argument may belong to the parameter group group

STC-S0010R1.0 ©2004, STC, All rights reserved 36

stc

Semiconductor

o P E N S Tn R = Test Consortium
3. The syntax:

(1) Flow flow_name

{
@) Flowltem item_name flowable_name
{
(©) Result result[:resultl]|optional [, result[:resultl]|optionail|optipnal.repeat
{
(D) dll_name: :function(argument[, argument]|ommnqumm);
®) | IncrementCounters counter[, counter]|0mkmdgqmm;
(6) | SetBin bin_name;
(@) | Property property _name = expression;
(3) [Return number; | Goto item_name;]
reneat 3}
} reneat
}
shall

(1) create the flow flow_name
(2) containing flow item item_name that executes the flowable or test flowable_name and for

the return value(s):

3) result (to resultl):

(4) executes custom function function in dil1_name.dll with argument(s) argument
(%) increments counter(s) counter Or

(6) increments the value of the Bin Definitions leaf bin bin_name oOr

(7) assigns expression to the previously defined property property_name

(8) and returns to caller with code number Or branches to the flow item item_name

4. The syntax:for flowables shall reside in pre-header files

5. The syntax for flows shall reside in test plans

STC-S0010R1.0 ©2004, STC, All rights reserved 37

stc

Semiconductor

OP ENS TH R a Test Consortium

12.2 Usage Example

The following is a usage example of the flow syntax:

A Flow consists of a number of FlowItems and transitions
between them. FlowItems have names which are unique in
the enclosing Flow, execute a "Flowable" object, and then
transition to another FlowItem in the same enclosing Flow.

Flowable objects include Tests and other Flows. When
a Flowable object executes, it returns a numeric Result
which is used by the FlowItem to transition to another
FlowItem. As a result of this, both Tests and Flows
terminate by returning a numeric Result value.

FlowTestl implements a finite state machine for the
Min, Typ and Max flavors of MyFunctionalTestl. On
success 1t tests TestlMin, TestlTyp, TestlMax

and then returns to its caller with 0 as a successful
Result. On failure, it returns 1 as a failing Result.

Assume that the tests MyFunctionalTestlMin, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure). The Transition Matrix of the

finite state machine implemented by FlowTestl is:

Result 0 Result 1 Result 2
FlowTestl Min FlowTestl Typ return 1 return 1
FlowTestl Typ FlowTestl Max return 1 return 1
FlowTestl Max return 0 return 1 return 1

where the IFlowables run by each FlowlItem are:
FlowItem IFlowable that is run
FlowTestl Min MyFunctionalTest1Min
FlowTestl Typ MyFunctionalTest1Typ
FlowTestl_ Max MyFunctionalTest1lMax

low FlowTestl

~HEtHHHHFEHEHEFEFEHFFEHHF S HF S HFFEH T HFFHE

This FlowItem represents a state named FlowTestl Min.

It runs the test MyFunctionalTestlMin. When that completes
it will:

- Result 0: Increment the PassCount counter, and

go to FlowItem FlowTestl Typ.

- Results 1, 2: Increment the FailCount counter,

and return.

?lowItem FlowTestl Min MyFunctionalTestlMin

Result 0
Property PassFail = "Pass";

IncrementCounters PassCount;
GoTo FlowTestl Typ;

Result 1,2
Property PassFail = "Fail";
IncrementCounters FailCount;
Return 1;

STC-S0010R1.0 ©2004, STC, All rights reserved

38

stc

Semiconductor

OP ENS TH R a Test Consortium

FlowItem FlowTestl Typ MyFunctionalTestlTyp
Result O
Property PassFail = "Pass";

IncrementCounters PassCount;
GoTo FlowTestl Max;

Result 1,2
Property PassFail = "Fail";
IncrementCounters FailCount;
Return 1;

}

Likewise for FlowTestl Max
FlowItem FlowTestl Max MyFunctionalTestlMax

Result 0
Property PassFail = "Pass";
IncrementCounters PassCount;
Return 0;

Result 1,2
Property PassFail = "Fail";
IncrementCounters FailCount;
Return 1;

STC-S0010R1.0 ©2004, STC, All rights reserved

39

e

stc
OPENSTAR Test Lonsartium

13
Run Result Map Syntax

A run result map comprises correlation between a flow return value and a string that is used
to describe the result.

13.1 Requirements upon Run Result Maps

1. The syntax:
RunResultMap

{
result[:resultl] = “description”; |optional repeat
Default = “default_description”;

}

shall map flow return value(s) result (to resultl) to the string descriptor description and any
remaining return values to default_description

13.2 Usage Example

The following is a usage example of the run result map syntax:

STC-S0010R1.0 ©2004, STC, All rights reserved 40

@ = Semiconductor
OPENSTAR Test Lonsortium
RunResultMap

-108:-101 = "Fail 1 GHz";
-208:-201 = "Fail 2 GHz";
-308:-301 = "Fail 3 GHz";
-408:-401 = "Fail 4 GHz";
-508:-501 = "Fail 5 GHz";
-1 = "All Fail";
101:108 = "Pass 1 GHz";
201:208 = "Pass 2 GHz";
301:308 = "Pass 3 GHz";
401:408 = "Pass 4 GHz";
501:508 = "Pass 5 GHz";
0 = "All Pass";
Default = "Uninterpreted Run Result";
}

The above RunResultMap specifies that if a result value r is in the interval —108 <r <-101 it
will be interpreted by the string “Fail 1 GHz”. Likewise, a value 0 is interpreted as “All

Pass”.

Finally, any integer that is not explicitly mapped is interpreted by the default value

“Uninterpreted Run Result”.

STC-S0010R1.0

©2004, STC, All rights reserved 41

/“""_-bt“gj}

stc
OPENSTAR Test Lonsartium

14

The Test Plan Syntax

Test plans initialize and control the flow of tests that execute patterns against the DUT.

14.1 Requirements upon Test Plans

1. The syntax:

Version version;

shall specify the TOS version version

2. The syntax:
Import “file”;

shall insert the contents of file

3. The syntax:
[TestPlan test_plan | SysCFlows sysc_flow];

shall declare a test plan with designation test_plan or test plan sysc_flow that comprises
flowable declarations and flows and only flowable declarations and flows that manipulate the
system controller prior to loading of test plans to the site controllers

4. The site controller test plan syntax:
DUTType ‘“dut_type”;

shall specify that the test plan shall execute against a DUT whose type is dut_type

5. The site controller test plan syntax:
PListDefs{ [file:pattern_list | variable]|repeat}

shall declare that the pattern list pattern_list in file file shall be used by the test plan and the
variable variable serve as repository for a pattern list name specified at runtime

STC-S0010R1.0 ©2004, STC, All rights reserved 42

/“""_-bt“gj‘.

@ - Eemgrguccor
OP ENS TH R Test Ennsnr!i:lm
6. The site controller test plan syntax:

10.

11

12.

SocketDef = “file”;

shall specify that the socket mapping used by the test plan resides in socket file file

The site controller test plan syntax:
OfflineDef = “file”;

shall specify that the simulation configuration file used by the test plan resides in file

The site controller test plan syntax:

[user_var; | counter; | test_condition; | flowable; | bin_def; | custom_type; |

test_condition_group; | spec_set | test_flow;]|repeat

shall declare the local user var(s) user_var, counter(s) counter, flowable class(es) flowable, bin
definition(s) bin_def, test condition group(s) test_condition_group , sSpecification set(s)
spec_set, flow class(es) test_flow in accordance with the syntax for such declarations and as
alternative to inclusion by Import

The site controller or system controller test plan syntax:
Flowable |repeat
flow |repeat

shall declare the flowable class(es) flowable and create the flow(s) flow

The site controller or system controller test plan syntax:
FlowDefs{ predefined_flow = flow}
shall specify assign flow flow to the predefined flow entry point predefined_flow currently

supported to be: CfgPLLoadFlow, InitFlow, LotStartFlow/LotEndFlow, DUTChangeFlow,
TestPlanStartFlow, TestPlanEndFlow, TestStartFlow, TestEndFlow, MainFlow, TestFlow

. The site controller test plan syntax:

EndSequence { test_condition [, test_condition]hqwm

shall specify that test condition(s) test_condition shall apply at end of test plan.

The test plan syntax shall reside in files with extension tpl.

STC-S0010R1.0 ©2004, STC, All rights reserved 43

%% OPENSTAR

stc

Semiconductor
Test Consortium

14.2

Usage Example

The following is a usage example of the test plan syntax:

Version 1.0;

This is how a pin file would be imported.
Import xxx.pin;

Constants and variables giving limiting values.
Import limits.usrv;

Import test condition groups
Import myTestConditionGroups.tcg;

Import some bin definitions.
Import bins.bdefs;

Import functional tests
Import FunctionalTest.ph;

The name of this testplan
TestPlan OTPLSample;

The type of DUT
DUTType "74LS245";

This block defines Pattern Lists file-qualified names and

Pattern List variables that are used in Test declarations.

Pattern list variables are deferred till customization is
examined.
PListDefs

File qualified pattern list names
listl.plist:plistl,
list2.plist:plist2

STC-S0010R1.0 ©2004, STC, All rights reserved

44

stc

» Semiconductor
OPENSTAR Test Lonsortium
The socket for the tests in this test plan (this is not imported,
but resolved at activation time) :
SocketDef = socket.soc;

Declare some user variables inline
UserVars

String name for current test
String CurrentTest = "MyTest";

TestCondition TClMin

TestConditionGroup
Selector = min;

TCG1;

TestCondition TC1Typ

TestConditionGroup
Selector = typ;

TCG1;

TestCondition TClMax

TestConditionGroup
Selector = max;

TCG1;

+H

Likewise for TC2Min, TC2Typ, TC2Max

Declare a FunctionalTest. ‘FunctionalTest’ refers to a C++
test class that runs the test, and returns a 0, 1 or 2 as
a Result. The Test Condition Group TCGl is selected with
the "min" selector by referring to the TC1lMin TestCondition.

est FunctionalTest MyFunctionalTestlMin

~HFHFHHHF

PListParam = plistl;
TestConditionParam = TC1Min;

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

» Semiconductor
OPENSTAR Test Lonsortum
Another FunctionalTest selecting TCGl with "typ"
Test FunctionalTest MyFunctionalTestlTyp

PListParam = plistl;
TestConditionParam = TClTyp;

Another FunctionalTest selecting TCGl with "max"
Test FunctionalTest MyFunctionalTestlMax

PListParam = plistl;
TestConditionParam = TClMax;

Now select TCG2 with "min"
Test FunctionalTest MyFunctionalTest2Min

PListParam = plist2;
TestConditionParam = TC2Min;

Likewise for TCG2 with "typ" and TCG2 with "max"
Test FunctionalTest MyFunctionalTest2Typ

PListParam = plist2;
TestConditionParam = TC2Typ;

Test FunctionalTest MyFunctionalTest2Max

PListParam = plistl;
TestConditionParam = TC2Max;

#

At this time the following Test objects have been defined
MyFunctionalTest1lMin

MyFunctionalTest1Typ

MyFunctionalTest1Max

MyFunctionalTest2Min

MyFunctionalTest2Typ

MyFunctionalTest2Max
#
#
#
#
#
#
C

Counters are variables that are incremented during the
execution of a test. They are UnsignedIntegers that are
initialized to zero.

ounters {PassCount, FailCount}

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

p ENS TH R a Test Consortium

Flows can now be presented. A Flow is an object that

essentially represents a finite state machine which

can execute "Flowables", and transition to other flowables based
on the Result returned from executing a Flowable. A Flow can also
call another flow.

A Flow consists of a number of FlowItems and transitions
between them. FlowItems have names which are unique in
the enclosing Flow, execute a "Flowable" object, and then
transition to another FlowItem in the same enclosing Flow.

Flowable objects include Tests and other Flows. When
a Flowable object executes, it returns a numeric Result
which is used by the FlowItem to transition to another
FlowItem. As a result of this, both Tests and Flows
terminate by returning a numeric Result value.

FlowTestl implements a finite state machine for the
Min, Typ and Max flavors of MyFunctionalTestl. On
success it tests TestlMin, TestlTyp, TestlMax

and then returns to its caller with 0 as a successful

O
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
Result. On failure, it returns 1 as a failing Result.
#
#
#
#
#

FlowTestl Max MyFunctionalTest1Max

low FlowTestl

Assume that the tests MyFunctionalTestlMin, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure). The Transition Matrix of the
finite state machine implemented by FlowTestl is:
B o o m .
Result 0 Result 1 Result 2
B C o m .
FlowTestl Min FlowTestl Typ return 1 return 1
FlowTestl_Typ FlowTestl_ Max return 1 return 1
FlowTestl Max return O return 1 return 1
#
where the IFlowables run by each FlowItem are:
FlowItem IFlowable that is run
FlowTestl Min MyFunctionalTest1Min
FlowTestl Typ MyFunctionalTestl1Typ
#
#
F

This FlowItem represents a state named FlowTestl Min.

It runs the test MyFunctionalTestlMin. When that completes
it will:

- Result 0: Increment the PassCount counter, and

go to FlowItem FlowTestl Typ.

- Results 1, 2: Increment the FailCount counter,

and return.

?lowItem FlowTestl Min MyFunctionalTestlMin

Result 0
Property PassFail = "Pass";

IncrementCounters PassCount;
GoTo FlowTestl Typ;

Result 1,2
Property PassFail = "Fail";
IncrementCounters FailCount;
Return 1;

STC-S0010R1.0 ©2004, STC, All rights reserved

OPENSTAR

FlowItem FlowTestl Typ MyFunctionalTestlTyp
Result O
Property PassFail = "Pass";

IncrementCounters PassCount;
GoTo FlowTestl Max;

Result 1,2
Property PassFail = "Fail";
IncrementCounters FailCount;
Return 1;

}

Likewise for FlowTestl Max
FlowItem FlowTestl Max MyFunctionalTestlMax

Result 0

Property PassFail = "Pass";

IncrementCounters PassCount;

Return 0;

Result 1,2

Property PassFail = "Fail";

IncrementCounters FailCount;

Return 1;
#
FlowTest2 is similar to FlowTestl. It implements a
finite state machine for the Min, Typ and Max flavors
of MyFunctionalTest2. On success it tests Test2Min,
Test2Typ, Test2Max and then returns to its caller with
0 as a successful Result. On failure, it returns 1 as
a failing Result.
#
Assume that the tests MyFunctionalTest2Min, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure). The Transition Matrix of the
finite state machine implemented by FlowTestl is:
B o m o C .
Result 0 Result 1 Result 2
B o o o C .
FlowTest2 Min FlowTest2 Typ return 1 return 1
FlowTest2_Typ FlowTest2_ Max return 1 return 1
FlowTest2 Max return O return 1 return 1
#

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor
Test Consortium

48

stc

Semiconductor

OPENSTAR’ Test Consoriiam
Where the IFlowables run by each FlowItem are:
FlowItem IFlowable that is run
FlowTest2_Min MyFunctionalTest2Min
FlowTest2 Typ MyFunctionalTest2Typ
FlowTest2_ Max MyFunctionalTest2Max
#
Flow FlowTest2
{
#

}

Now the FlowMain, a main flow can be presented. It

implements a finite state machine that calls FlowTestl
and FlowTest2 as below:

FlowMain 1FlowMain 2return 1
FlowMain 2return O return 1

Where the IFlowables run by each FlowlItem are:
FlowItem IFlowable that is run
FlowMain_ 1 FlowTestl
FlowMain 2 FlowTest2

low FlowMain

~mFHHEFEHHFEHEHFEFEHHFFEHFHF

The first declared flow is the initial flow to be
executed. It goes to FlowMain 2 on success, and
returns 1 on failure.

FlowItem FlowMain 1 FlowTestl

Result 0
Property PassFail = "Pass";

IncrementCounters PassCount;
GoTo FlowMain 2;

Result 1
Sorry ... FlowTestl failed
Property PassFail = "Fail";

IncrementCounters FailCount;

Add to the right soft bin
SetBin SoftBins.FailSBFT3GHz;

Return 1;

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

%OPENSTFIR” Test Lonsartium
FlowItem FlowMain 2 FlowTest2
Result O
All passed!
Property PassFail = "Pass";

IncrementCounters PassCount;

Add to the right soft bin
SetBin SoftBins.PassAll3GHz;

Return O;

}

Result 1
FlowTestl passed, but FlowTest2 failed
Property PassFail = "Fail";
IncrementCounters FailCount;

Add to the right soft bin
SetBin SoftBins.FailCache3GHz;

Return 1;

——

The FlowDefs section specifies the selection of previously

declared Flows for various purposes. This section has the
form:
FlowDefs
<keyword> = <Flow Name>;

The allowed keywords are:
MainFlow
InitFlow
TestPlanStartFlow
TestPlanEndFlow
TestStartFlow
TestEndFlow
SiteLoadFlow
LotStartFlow
LotEndFlow
DUTChangeFlow
CfgPLLoadFlow

TestConditionGroups and TestConditions in support of an EndSequence
and an EndSequence could be declared here, as in the code sample
provided earlier.

lowDefs

~mEHHFH HFHHFHFHHFHFEHHHFEFEHFFEHHFFEFHFFEHHF

Only the main test flow is specified.
MainFlow = FlowMain;

The above test plan is structured as follows:

1. First, a version number is provided. This number is used to ensure compatibility with
an OTPL compiler version. This is done for all OTPL sub-languages.

STC-S0010R1.0 ©2004, STC, All rights reserved 50

/“""_-bt“gj}

@ - Eemgrguccor
OPENSTAR Test Ennsnr!i:lm
2. Then, as in other OTPL sub-languages, a number of imports are declared. These are

10.

11

various files with declarations needed in order to resolve names used in the test plan.

Next, the Test Plan name is declared, after which come the inline declarations of the test
plan.

Next a set of PListDefs are declared. These include file-qualified names naming
GlobalPLists from the named files. They also include Pattern List variables. Pattern
List variables are variables that can be initialized in custom flowables at execution time.
They provide a means of delaying binding tests to actual pattern lists until runtime.

Following this a SocketDef is provided. This merely informs the TestPlan of the socket
file that will be used. Information from the socket file is not used in the TestPlan
description.

Next, a set of UserVars is declared. These include a string.

Some Counters are then declared, to determine the number of tests passed and failed.
Counters are simply variables that are initialized to zero, and incremented at
IncrementCounter statements. They are different from Bins, which have the semantics
that only the currently set bin is incremented at the end of the test of a DUT.

Next, a series of Test Conditions is declared. Each of these specifies a Test Condition
Group and a selector. In this example, the Test Condition Groups come from
mytestconditionsgroups.tcg. However, they could have been inline in the test plan.

Next, a series of Flowables or Tests is declared. Each of this is of the OASIS known
Test FunctionalTest which selects a Pattern List and a test condition. Thus for
instance, MyFunctional Test1Max selects the test condition TCiMax and a pattern list.

Following this, three flows are declared, FlowTest1, FlowTest2 and FlowMain. Flows run
Flowables. Flowables include Tests (such as MyFunctionalTestiMax) and other flows
(such as FlowTest1 and FlowTest2). Each of FlowTest1 and FlowTest2 run through the
minimum, typical and maximum versions of Testl and Test2 respectively. The flow
FlowMain calls the earlier declared flows, FlowTestl and then FlowTest2.

. Finally, the TestFlow event is assigned to the FlowMain Flow. Thus the flow FlowMain

is the one that will be executed by this test plan when a user chooses to Execute this plan.

STC-S0010R1.0 ©2004, STC, All rights reserved 51

/“""_-bt“gj}

sto
OoOPeENSTAR Tost Conenrtiam

15

Appendix A: TPL Grammar in Backus-Naur Notation

This appendix presents formal file grammars that can be parsed by a LALR(1) parser’, such
as one generated by the yacc parser generator. The grammars listed make use of a stylized
notation for expressing the form of the file contents; this Appendix describes the notation.

When specifying the grammar, terminal symbols are shown in bold typewriter type, and are
to appear in the input exactly as written. Non-terminal symbols are shown in italic type;
they are spelled beginning with a letter, and can be followed by zero or more letters, digits, or
hyphens:

symboll symbol-2 symbol-3

Syntactic definitions are introduced by the name of the non-terminal being defined followed
by a colon. One or more alternatives then follow on successive lines:

non-terminal :
alternative-1
alternative-2

Below is shown a non-terminal with two alternatives, one of which is the empty alternative,
and the other a very long alternative. The very long alternative that takes more than a line
gets continued to the next line by a ‘\’ at the end of the first line.

non-terminal :
<empty>
this-is-a-very-long-non-terminal it-is-followed-by-an-even-longer-non-terminal \
and-then-there-is-an-even-longer-next-line-non-terminal

When the words “one of” follow the colon, this signifies that each of the terminal symbols
following on one or more lines is an alternative definition:

digit : one of
0123456789

Optional components of a definition are signified by appending the suffix opt to a terminal or
non-terminal symbol:

! A parser that uses a Look Ahead Left Recursive parsing technique, with a look-ahead limited to one token.

STC-S0010R1.0 ©2004, STC, All rights reserved 52

stc

®£)PENSTHR g g e
non-terminal :

symbol-1 optional-symbolgp

The OTPL grammar is broken up into three sections: the main grammar, the Timing file
grammar and the TimingMap file grammar in the sections that follow.

15.1 Main OTPL Syntax

OTPL _unit :
version_info import_list OTPL_decl

version_info :
Version version_identifier ;"

import_list :
<empty>
import_list import_stmt

import_stmt :
Import import_items ";"

import_items :
file_name
import_items *," file_name

file_name :
filename_segment
file_name "." filename_segment

OTPL_decl :
user_vars_decls

custom_type_decls
levels_decls
named_spec_set_decls
test_condition_group_decls
bin_defs_decl
pre_header_decl
test_plan_decl
sysc_flows_decl
run_result_map_decl

user_vars_decls :
user_vars_decl
user_vars_decls user_vars_decl

user_vars_decl :
user_vars_decl_header '{" user_vars_item_list '}

STC-S0010R1.0 ©2004, STC, All rights reserved

%OPENSTFIR“ Tos Eonsoriiom
user_vars_decl_header :
UservVars

UserVars user_vars_name

user_vars_item_list :
<empty>
user_vars_item_list user_vars_item

user_vars_item :
elementary_type object_name =" expression ;"
elementary_type object_name array_size ‘=" array_initial_value ;"
Const elementary_type object_name '=' expression ;"
Const elementary_type object_name array_size '=" array_initial_value ;"
custom_type_instance

elementary_type :
Integer

UnsignedlInteger
Double
String
Voltage
VoltageSlew
Current
Power
Time
Length
Frequency
Resistance
Capacitance

array_size :
‘[INTEGER_TKN 'T*

array_initial_value :
{* others_clause '}'
{* element_list '}’
{* element_list *," others_clause '}’

element_list :
expression
element_list *," expression

others_clause :
Others '=' expression

expression_list :
<empty>
expression
expression_list ', expression

expression :
expression '+' term
expression '-' term
term

STC-S0010R1.0 ©2004, STC, All rights reserved

& Sic
OPENSTAR Tst Cansortium
term :

term "*' factor
term '/* factor
factor

factor :

'(* expression)"
qualified
qualified '[" INTEGER_TKN 'T*
type_conversion
function_call
- factor
literal

literal :
STRING_LIT_TKN
INTEGER_TKN optional_measurement_units_name
DOUBLE_TKN optional_measurement_units_name

qualified :
field_qualified
collection_name "." field_qualified

field_qualified :
identifier
field_qualified “->" identifier

type_conversion :
elementary_type ‘(" expression ')’

function_call :
identifier ““:- - identifier '(* expression_list *)’
custom_type_decls :
custom_type_decl
custom_type_decls custom_type_decl

custom_type_decl :
custom_type_decl_hdr custom_type_decl_body

custom_type_decl_hdr :
CustomType custom_type_name

custom_type_decl_body :
{* custom_type_decl_members '}

custom_type_decl_members :
custom_type_member
custom_type_decl_members custom_type_member

custom_type_member :

STC-S0010R1.0 ©2004, STC, All rights reserved

55

stc

Semiconductor

OP ENS TH R a Test Consortium

STC-S0010R1.0

custom_type_member _type field_name *;"

custom_type_member_type :
identifier
elementary_type

custom_type_instance :
custom_type_instance_decl custom_type_instance_init

custom_type_instance_decl :
custom_type_name object_name

custom_type_instance_init :
{* custom_type_init_list '}'

custom_type_init_list :
custom_type_init_item
custom_type_init_list ", custom_type_init_item

custom_type_init_item :
field_qualified '=" expression

levels_decls :
levels_decl
levels_decls levels_decl

levels_decl :
levels_header '{" level _items_list '}’

levels_header :
levels_decl_keywords levels_name

levels_decl_keywords :
Levels
DCParametrics
Calibration

level _items_list :
<empty>
level_items_list level item

level_item :
level_item_ref '{" level_param_defn_list '}’
Delay expression *;'
MinDelay expression ;"

level_item_ref :
pin_or_pingroup_name

level_param_defn_list :

<empty>
level _param_defn_list level param_defn

©2004, STC, All rights reserved

56

stc

Semiconductor

OP ENS Tn R a Test Consortium

level_param_defn :
level_param_name '=" expression *;"
level_param_name '=' slew_expression ;"

slew_expression :
Slew '(* expression '," expression ')’

named_spec_set_decls :
named_spec_set_decl
named_spec_set_decls named_spec_set decl

named_spec_set decl :
named_spec_set_header '{" spec_item_list '}’

named_spec_set_header :
SpecificationSet spec_set name '(* spec_param_list *)"

spec_param_list :
<empty>
Spec_param_name
spec_param_list *," spec_param_name

spec_item_list :
<empty>
spec_item_list spec_item

spec_item :
elementary_type spec_item_name =" expression_list *;"

flowable_decl :
flowable_header *{* flowable_param_setter_list '}'

flowable_header :
flowable_indicator flowable_type name flowable_object name

flowable_indicator :
Flowable
Test

flowable_param_setter_list :
flowable_param_setter
flowable_param_setter_list flowable_param_setter

flowable_param_setter :
identifier ‘=" flowable_param_value ";"
param_group_identifier '{" param_group_field_associations '}'
flowable_param_value :
identifier
string_or_signed_literal

string_or_signed_literal :

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

OP ENS Tn R a Test Consortium

STRING_LIT_TKN
optional_minus INTEGER_TKN optional_measurement_units_name
optional_minus DOUBLE_TKN optional_measurement_units_name

optional_minus :
<empty>

param_group_identifier :
identifier

param_group_field_associations :
param_group_field_associations *," param_group_field_association
param_group_field_association

param_group_field_association :
identifier '=' flowable_param_value

test_condition_decl :
TestCondition test_cond_name '{’ test_condition_params '}’

test_condition_params :
test_condition_group_param selector_param
selector_param test_condition_group_param
test_condition_group_param

selector_param :
Selector '=' identifier *;'

test_condition_group_param :
TestConditionGroup '=" identifier *;"

test_condition_group_decls :
test_condition_group_decls_item
test_condition_group_decls test_condition_group_decls_item

test_condition_group_decls_item :
test_condition_decl
test_condition_group_decl

test_condition_group_decl :
test_condition_group_header '{ spec_set tcg_levels_items timings '}'

test_condition_group_header :
TestConditionGroup test_cond_group_name

spec_set :
<empty>
reference_to_named_spec_set
local_spec_set

reference_to_named_spec_set :

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

OP ENS Tn R a Test Consortium

SpecificationSet spec_set name';’

local_spec_set :
local_spec_set_header '{" spec_item_list '}'

local_spec_set_header :
SpecificationSet ‘(‘spec_param_list ")

tcg_levels_items :
<empty>
tcg_levels_items tcg_levels_item

tcg_levels_item :
reference_to_named_levels
local_levels

reference_to_named_levels :
levels_ref keywords levels_name *;'

levels_ref keywords :
Levels
DCParametrics
Calibration
DynCalibration

local_levels_decl_keywords :
Levels
DCParametrics
Calibration

local_levels :
local_levels_header '{’ level_items_list '}’

local_levels_header :
local_levels_decl_keywords

timings :
<empty>
Timings '{ timing_item '}’
Timings '{ timing_item timing_map_item '}’
Timings '{' timing_map_item timing_item '}’

timing_item :
Timing '=' identifier *;’

timing_map_item :
TimingMap '=" identifier *;"'
identifier_or_file_qualified :
identifier
file_qualified

file_qualified :

STC-S0010R1.0 ©2004, STC, All rights reserved

59

stc

Semiconductor

OP ENS Tn R a Test Consortium

file_name *:" identifier

bin_defs_decl :
BinDefs '{" bin_group_decls sort_bin_group_specifier '}’

bin_group_decls :
bin_group_decl
bin_group_decls bin_group_decl

bin_group_decl :
BinGroup bin_header '{" bin_group_items '}'

bin_header :
bin_group_name

bin_group_items :
bin_group_item
bin_group_items bin_group_item

bin_group_item :
Bin bin_name INTEGER_TKN ":* STRING_LIT_TKN ;'
LeafBin bin_name INTEGER_TKN *:* STRING_LIT_TKN *;"
Bin bin_name INTEGER_TKN *:* STRING_LIT_TKN *," bin_name *;*
LeafBin bin_name INTEGER_TKN *:* STRING_LIT_TKN *," bin_name *;'

sort_bin_group_specifier :
SortBinGroup '="bin_name ;'

pre_header_decl :
flowable_class_prologue flowable_class_params code_template
functions_class_prologue function_def list
global_enumerations code_template

flowable_class_prologue :
class_name_decl class_dllname_decl class_bases_decl

class_name_decl :
TestClass '=" identifier_or_test keywd ";"
FlowableClass '=" identifier_or_test_keywd ;"

class_dllname_decl :
<empty>
TestClassDII '="' STRING_LIT TKN ;'

identifier_or_test_keywd :
identifier
Test

class_bases_decl :

<empty>
PublicBases '=' public_base list";"

STC-S0010R1.0 ©2004, STC, All rights reserved

60

% OPENSTAR 1oy Hongariomn
public_base_list :
identifier
public_base_list *," identifier
Test

public_base list',' Test

flowable_class_params :
<empty>
Parameters '{' flowable_class_param_items '}'

flowable_class_param_items :
flowable_class_param_item
flowable_class_param_items flowable_class_param_item

flowable_class_param_item :
flowable_class_param_info
flowable_class_param_group_info
flowable_class_enumeration

flowable_class_param_info :
identifier_or_type_name param_name '{' flowable_class_param_attr_list '}’

identifier_or_type name :
identifier
elementary_type
oasis_class_name

oasis_class_name :
TestCondition
PatternList

flowable_class_param_attr_list :
flowable_class_param_attr
flowable_class_param_attr_list flowable_class_param_attr

flowable_class_param_attr :
cardinality_attr
Attribute '=' identifier *;'
SetFunction '=" identifier implement_directive ;'
Choices '=' choice_list";"
GuiType =" STRING_LIT_TKN ;'
Default '=' flowable_param_value *;’
Description '="' STRING_LIT_TKN*;*

cardinality_attr :
Cardinal ity '=' cardinality_value ;'

cardinality_value :
wqr
“«0_17
“1_n
“0-n”

STC-S0010R1.0 ©2004, STC, All rights reserved 61

% OPENSTAR 1oy Hongariomn
implement_directive :
<empty>
Implement
choice_list :

optional_minus INTEGER_TKN
STRING_LIT_TKN
choice_list ', optional_minus INTEGER_TKN
choice_list"," STRING_LIT_TKN

flowable_class_param_group_info :
param_group_header '{' param_group_attr_list param_group_field_infos '}'

param_group_header :
ParamGroup param_group_name

param_group_attr_list :
param_group_attr
param_group_attr_list param_group_attr

param_group_attr :
cardinality_attr
Attribute '=' identifier *;'
SetFunction '=" identifier implement_directive ;'

param_group_field_infos :
param_group_field_info
param_group_field_infos param_group_field_info

param_group_field_info :
identifier_or_type_name param_group_field_name \
"' Description '=" STRING_LIT TKN ;" '}’

flowable_class_enumeration :
Enum enum_name '=" identifier_list *;"

functions_class_prologue :
Functions '=" identifier *;'

function_def _list :
function_def
function_def_list function_def

function_def :
return_type function_name '(* typed_param_list)" *;"

return_type :
Void
elementary_type

typed_param_list :
<empty>

STC-S0010R1.0 ©2004, STC, All rights reserved

62

stc

%OPENSTFIR“ 1oy Hongariomn
typed_param
typed_param_list *," typed_param

typed param :
elementary_type param_name
elementary_type param_name '[" ']’

global_enumerations :
global_enumeration
global_enumerations global_enumeration

global_enumeration :
enum_with_external_directive enum_name '=" identifier_list";"

enum_with_external_directive :
Enum
External Enum

code_template :
CodeTemplate

counters_decl :
Counters '{' counters_list '}’

counters_list :
identifier
counters_list*," identifier

plist_defs_decl :
PListDefs '{ plist_defs_list }'

plist_defs_list :
file_qualified
plist_defs_list"," identifier_or_file_qualified

socket_def_decl :
SocketDef '=' file_name ;'

offline_def_decl :
OfflineDef '=' file_name ;"

test_flow_decl :
flow_header '{* flow_item_list '}'

flow_header :
Flow flow_name

flow_item_list :
<empty>
flow_item_list flow_item

flow_item :

STC-S0010R1.0 ©2004, STC, All rights reserved

63

stc

Semiconductor

OP ENS TH R a Test Consortium

flow_item_header '{" result_clause_list '}’

flow_item_header :
Flowltem flow_item_name identifier

result_clause_list :
result_clause
result_clause_list result_clause

result_clause :
Result run_result_list '{" action_list transition '}’

run_result_list :
run_result_item
run_result_list*," run_result_item

run_result_item :
run_result
run_result ":* run_result

action_list :
<empty>
action_list action

action :
routine_call_action
increment_counters_action
property_action
set_bin_action

increment_counters_action :
IncrementCounters identifier_list *;"

identifier_list :
identifier
identifier_list"," identifier

property_action :
Property identifier ‘=" STRING_LIT _TKN ;'

routine_call_action :
identifier ““z = identifier '(* expression_list)" *;"

set_bin_action :
SetBin bin_group_name "." bin_name *;’

transition :
Return run_result’;"
GoTo flow_item_name ;"

run_result_map_decl :
RunResultMap '{" run_result_map_entries '}’

STC-S0010R1.0 ©2004, STC, All rights reserved

64

stc

Semiconductor

OP ENS TH R a Test Consortium

run_result_map_entries :
run_result_map_entry
run_result_map_entry run_result_map_entries

run_result_map_entry :
run_result '=" STRING_LIT _TKN*;"
run_result ":* run_result '=" STRING_LIT_TKN *;"
Default '=" STRING_LIT _TKN ;'

test_plan_decl :
test plan_name_decl test_plan_dut_type_decl \
test_plan_item_list flow_defs_decl

test_plan_name_decl :
TestPlan test_plan_name ;'

test_plan_dut_type decl :
DutType dut_type_name ;'

test_plan_item_list :
test_plan_item
test_plan_item_list test_plan_item

test_plan_item :
user_vars_decl

counters_decl
plist_defs_decl
socket_def decl
offline_def_decl
flowable_decl
test_condition_decl
bin_defs_decl
custom_type_decl
test_condition_group_decl
test_flow_decl
end_sequence_decl
run_result_map_decl

flow_defs_decl :
FlowDefs '{' flow_defs_item_list '}’

flow_defs_item_list :
<empty>
flow_defs_item_list flow_defs_item

flow_defs_item :
standard_flow_name '=' flow_name *;’

end_sequence_decl :
EndSequence '{' end_sequence_test_conditions '}’

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

OP ENS TH R a Test Consortium

end_sequence_test_conditions :
test_cond_name
end_sequence_test_conditions *," test_cond_name

sysc_flows_decl :
sysc_flows_name_decl sysc_flows_item_list flow_defs_decl

sysc_flows_name_decl :
SyscFlows sysc_flows_name *;"

sysc_flows_item_list :
sysc_flows_item
sysc_flows_item_list sysc_flows_item

sysc_flows_item :
flowable_decl
test flow_decl
run_result_map_decl

bin_name :
STRING_TKN

bin_group_name :
STRING_TKN

dut_type_name :
STRING_TKN
STRING_LIT_TKN

enum_name :
STRING_TKN

field_name :
STRING_TKN

filename_segment :
STRING_TKN

STRING_LIT_TKN
Test

flowable_type name :
STRING_TKN

flowable_object_name :
STRING_TKN

flow_item_name :
STRING_TKN

standard_flow_name :
STRING_TKN

STC-S0010R1.0 ©2004, STC, All rights reserved

66

stc

%OPENSTFIR“ o canductor
flow_name :
STRING_TKN

function_name :
STRING_TKN

identifier :
STRING_TKN

levels_name :
STRING_TKN

level_param_name :
STRING_TKN

optional_measurement_units_name :
<empty>
STRING_TKN

object_name :
STRING_TKN

param_name :
STRING_TKN

param_group_name :
STRING_TKN

param_group_field_name :
STRING_TKN

custom_type_name :
STRING_TKN

run_result :
INTEGER_TKN
-' INTEGER_TKN

spec_item_name :
STRING_TKN

spec_param_name :
STRING_TKN

spec_set_name :
STRING_TKN

test_cond_group_name :
STRING_TKN

test_cond_name :
STRING_TKN

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

OP ENS Tn R a Test Consortium

test_plan_name :
STRING_TKN

sysc_flows_name :
STRING_TKN

user_vars_name :
STRING_TKN

version_identifier :
STRING_TKN

collection_name :
STRING_TKN

pin_or_pingroup_name :
STRING_TKN

Below are the definitions of symbols that are otherwise undefined above.

1. <empty>: The empty string. This is used when the nonterminal can be replaced by an empty
string. It is useful, for instance, to have an optional item such as optional_minus.

2. STRING TKN: a sequence of characters including alphanumerics and the underscore © °
character. It is usually used for names.

3. STRING_LIT TKN: a sequence of characters in double quotes, representing a string.
4. INTEGER TKN: standard representation of an integer in decimal notation.

5. DOUBLE TKN: standard representations of a floating point decimal number in decimal or
scientific notation.

STC-S0010R1.0 ©2004, STC, All rights reserved 68

%% OPENSTAR

stc

Semiconductor
Test Consortium

15.2 Timing File Syntax

STC-S0010R1.0

file-contents:
version-info import-listy, timing-definitions

version-info:
Version version-identifier ;

import-list:
import-list import-stmt

import-stmt:
Import import-items ;

import-items:
file-name
import-items *, " file-name

file_name:
timing-identifier
file_name = . " timing-identifier
timing-definitions:
timing-definition
timing-definitions timing-definition

timing_definition:
Timing timing-name *{" timing-block =}"

timing-name:
timing-identifier

timing-block:
common-section vendor-sectionp

common-section:
CommonSection "{" timing-domain-definitions*}*

vendor-section:
VendorSection "{" vendor-definitions*}"

vendor-definitions:
timing-domain-definitions:
timing-domain-definition

timing-domain-definitions timing-domain-definition

timing-domain-definition:

Domain domain-name MDR-specificationyy "{" domain-block "3}~

domain-name:

©2004, STC, All rights reserved

69

stc

Semiconductor

OP ENS Tn R = Test Consortium
timing-identifier

MDR-specification :
"[* DataRate data-rate-multiplicity *7"

domain-block:
period-table pin-timings

period-table:
PeriodTable "{" periods "}"

periods:
period
periods period

period:
Period period-name *{" time-expression *;* "}

period-name:
timing-identifier

time-expression:
expression

pin-timings:
pin-timing
pin-timings pin-timing

pin-timing:
Pin pin-name ~{" pin-timing-block =}"

pin-name:
timing-identifier

pin-timing-block:
default-pin-state,,; waveform-table-definitions pin-option-definitions,g

default-pin-state:

DefaultState "=" ForceDown?® ;
DefaultState "=" ForceUp ;
DefaultState "=" ForceOff ;
DefaultState "=" D ;
DefaultState "=" U ;
DefaultState "= Z ;

waveform-table-definitions:
waveform-table-definition
waveform-table-definitions waveform-table-definition

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor

OP ENS Tn R a Test Consortium

waveform-table-definition:
WaveformTable waveform-table-name = {" waveforms-block *}*

waveform-table-name:
timing-identifier

waveforms-block:
waveform-definitions

waveform-definitions:
waveform-definition
waveform-definitions waveform-definition

waveform-definition:
*{" waveform-character MDR-cycle-specificationgy \
={" single-waveform-definition *}= =}-
={ " waveform-characters MDR-cycle-specificationgy \
*{" multi-waveform-definition *}* *}-

waveform-characters:
waveform-character "/ waveform-character
waveform-characters */" waveform-character

MDR-cycle-specification:
"L~ cycle-number ="

single-waveform-definition:
event-blocks

event-blocks:
event-block
event-blocks event-block

event-block:
event @ time-expression , edge-resource ;
event @ time-expression ;

multi-waveform-definition:
multi-event-blocks

multi-event-blocks:
multi-event-block
multi-event-blocks multi-event-block

multi-event-block:
events @ time-expression , edge-resources ;
events @ time-expression ;

events:

event
events / event

STC-S0010R1.0 ©2004, STC, All rights reserved

%% OPENSTAR

edge-resources:
edge-resource
edge-resources / edge-resource

edge-resource:
E edge-number
Edge edge-number

pin-options-definitions:
PinOptions "{" pin-options "}

pin-options:
pin-options pin-option
pin-option

pin-option:
compare-mode-definition

compare-mode-definition:
CompareMode = Single;
CompareMode = Multi;

expression :
expression + term
expression - term
term

term :
term * factor
term / factor
factor

factor :

= (" expression ") "

qualified

qualified "[" integer "]~
string-literal

positive-integer

positive-integer measurement-units-name
double

double measurement-units-name
function-call

- factor

qualified :
timing-identifier
qualified . timing-identifier

function-call :
qualified (expression-list)

measurement-units-name :

STC-S0010R1.0 ©2004, STC, All rights reserved

stc

Semiconductor
Test Consortium

72

/“""_-bt“gj}

sto
OoOPeENSTAR Tost Conenrtiam

timing-identifier

The following are the descriptions of undefined non-terminals used in the above grammar:

1. version-identifier: A sequence of one or more characters from the set [0-9.7], where the
first character must be a digit. The version identifier is provided to allow the Timing syntax to
change and thus allow the system the ability to decipher from the version number what
constructs to expect.

2. timing-identifier: A sequence of one or more characters from the set [a-zA-Z_0-9],
where the first character must be from the set [a-zA-Z_].

3. vendor-definitions: Arbitrary text that is meaningful only to a specific vendor’s Timing
-object parser.

4. waveform-character : A single alpha-numeric character that represents the waveform
character in the pattern source file.

5. time-expression : An expression used to express the period and uses variable names,
mathematical symbols, numbers, braces and engineering units.

6. event: One of the standard list of supported event types. See Error! Reference source
not found. for details.

7. edge-number : An integer greater than or equal to 1, where the number indicates the
resource number associated with that event.

8. data-rate-multiplicity: ~An integer greater than or equal to 1, where the number indicates
the multiplicity of the data rate to use in case of a multi-data-rate pattern. For a double data rate
timing this number would be set to 2. In case the tester needs to use a single-data-rate the MDR
syntax can be omitted. In the case of Advantest’s OPENSTAR™ 250MHz digital module, valid
values are 1 & 2.

9. cycle-number: An optional number from the set [1-9][0-9]+, where the number indicates
that this describes the waveform for that section of a multi-data rate pattern. In a double data
rate [1] will define the first (odd) half of a Double-Rate tester cycle and [2] indicates the second
(even) half. The absence of this option indicates that the pin is configured to be operating in
Normal mode and there is no multiplexing of pattern data.

10. string-literal: A sequence of one or more characters from the set [a-zA-Z_0-9], where
the first character must be from the set [a-zA-Z_].

11. integer: A non-negative integer in decimal notation.
12. positive-integer: A positive integer in decimal notation.

13. comments: A # signifies a comment and all the text following the # character on that line
are ignored by the parser

STC-S0010R1.0 ©2004, STC, All rights reserved 73

stc

Semiconductor

OP ENS TH R a Test Consortium

15.3 TimingMap File Syntax

file-contents:
version-info import-listy, timing-map-definitions

version-info:
Version version-identifier = ;"

import-list:
import-list import-stmt

import-stmt:
Import import-items *; "

import-items:
file-name
import-items *," file-name

file_name:
timing-map-identifier
file_name =.= timing-map-identifier

version-identifier:
timing-map-version

timing-map-definitions:
timing-map-definition
timing-map-definitions timing-map-definition

timing-map-definition:
TimingMap timing-map-name *{" timing-map-block 3}~

timing-map-name:
timing-map-identifier

timing-map-block:
timing-map-domain-definitions

timing-map-domain-definitions:
timing-map-domain-definition
timing-map-domain-definitions timing-map-domain-definition

timing-map-domain-definition:
Domain domain-name *{" domain-block "}"

domain-name:
timing-map-identifier

domain-block:
waveform-maps

STC-S0010R1.0 ©2004, STC, All rights reserved

74

stc

Semiconductor

OP ENS Tn R a Test Consortium

waveform-maps:
waveform-map
waveform-maps waveform-map

waveform-map:
WaveformMap "{" waveform-map-block "3}*

waveform-map-block:
pin-format waveform-map-definitions

pin-format:
PinFormat "{" pin-names "}

pin-names:
pin-name
pin-names *," pin-name

pin-name:
timing-map-identifier

waveform-map-definitions:
waveform-map-definition
waveform-map-definitions waveform-map-definition

waveform-map-definition:
waveform-selector-name *, " period-name ", *{* waveform-table-names "}"

waveform-selector-name:
timing-map-identifier

period-name :
timing-map-identifier

waveform-table-names:
waveform-table-name
waveform-table-names *, " waveform-table-name

waveform-table-name:
timing-map-identifier

The following are the descriptions of undefined non-terminals used in the above grammar:

1.

STC-S0010R1.0

comments :
on that line are ignored by the parser.

timing-map-version: A sequence of one or more characters from the set [0-9.7, where the first
character must be a digit.

timing-map-identifier: A sequence of one or more characters from the set [a-zA-Z_0-9],
where the first character must be from the set [a-zA-Z_].

A # signifies the beginning of a comment and all the text following the # character

©2004, STC, All rights reserved 75

