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Spec/Category/SpecVariable handling proposals for P1450.4 
 

In all discussions below, the term “spec variables” refer to variables defined within a 

spec block, and which appear in one or more category subsections of a spec block or 

blocks.  Further, spec variables will have one or more selector subvalues (i.e., min, 

typ, max, or meas), as specified by IEEE 1450-1999, chapter 19 “Spec and Selector 

Blocks”, and selected by the Category and Selector statements of the PatternExec 

block (IEEE 1450-1999, chapter 16) or by parameters of P1450.4 Test or Flow blocks. 

 

As defined in IEEE 1450-1999, spec variables (used for specifying timing or levels 

values) are global in scope (accessible to all levels).  The combination of the category 

name + variable name must be named unique. 

 

Finally, even though the categories and variables are syntactically contained within a 

spec block, a spec block has no semantic meaning.  It is not used to provide additional 

scoping. 

 

1. Status quo for dot0, dot1, dot2 

a. No changes, no additions, to what’s specified in STIL dot0, dot1, dot2 

b. All spec variables are global, and combination of category+variable name 

MUST be unique. 

c. The set of variables within a particular category can be contained in one 

spec block, or spread out over multiple spec blocks. 

2. Add spec block name to scoping hierarchy, and allow duplication of 

“category+variable name” in multiple (uniquely named) spec blocks. 

a. All spec variables and categories are scoped to a particular spec block, 

which MUST be named in a particular context.  If variables or categories 

are NOT named in the currently active spec block(s), they cannot be 

resolved.  Can reuse category and variable names in different spec blocks. 

b. Note that this is a major change from existing STIL practice, and will 

present some issues when translating to LTX Envision (which uses a 

scheme very similar to #2 above).  We believe that these issues can be 

dealt with by creating Envision spec variable names which are a 

concatenation of the spec block name and spec variable name.  It’s a bit 

clumsy, but it will work.  When translating Envision code to STIL (if that 

is ever done), no problems arise, since an Envision spec variable is global 

in scope, and would not be reused in different spec blocks. 

 

Because existing languages use either opt 1 or opt 4 models, I propose that we include 

BOTH in dot4, allowing the user to choose which model to use via a STIL Flow 2009 

statement, with optional Level1 or Level2 token.  To be agnostic here, there is no default 

– the user MUST specify which model is being used.  Comments? 

 
STIL 1.0 { 

( Flow 2009 (Level1 | Level2) ; )+ 

} 
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Comparison of existing languages with respect to the above 

proposals 
 

 

LTX Envision: 

Directly compatible with opt. 1.  If opt. 4 is used, some name translation (most likely by 

appending the spec block name, and perhaps the category name, to the spec variable) 

must be used to avoid potential duplication of spec variable names, which is not allowed 

currently in Envision. (See appendix A below).  Referring to the discussion in appendix 

A (in which we’re discussing a spec variable named “Per”, to be used for setting the 

tester period), the key phrase is “Since all parameter names are at global scope, there can 

only be one instance of Per in the program.” 

 

Teradyne IGXL: 

Directly compatible with opt. 1.  If opt. 4 is used, some name translation (most likely by 

appending the spec block name, and perhaps the category name, to the spec variable) 

must be used to avoid potential duplication of spec variable names, which is not allowed 

currently in IG-XL.  (see Appendix B below).  See the key sections regarding multiple 

spec sheets (the IG-XL equivalent of a spec block). 

 

Multiple Specs Sheets Per Job  
A single job can use multiple AC or DC Specs sheets. Sheets in a job can refer to 

any of the specs defined on any of the specs sheets in the job. Use the Job List 

sheet to specify the specs sheets to be used in the job.  

Note:  
If there are multiple AC or DC Specs sheets in a job, all spec name symbols on 

the sheets must be unique. Duplicate names among the sheets are not allowed. If 

multiple specs sheets in a job define the same spec symbol name, a validation 

error results.  

 

These comments regarding allowing multiple spec sheets in a job (the IG-XL equivalent 

of a STIL TestProgram block) refer to the latest version (7.1) of IG-XL.  Earlier versions 

allowed only one DC spec sheet and one AC spec sheet per job (and with the constraint 

of unique spec sheet variable names). 

 

Advantest OTPL: 

Directly compatible with opt. 4. 

 

Schlumberger/NPTest/Credence/LTXC ASAP, Sapphire, and Diamond: 

Directly compatible with opt. 4. 

 

Teradyne IG973/IG971/IG953: still gathering information.  Believe that duplicate spec 

names are not allowed 

 

Teradyne Image: procedural only, not block-structured.  C-language conventions 

regarding variable names apply. 
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Appendix A 

 
Hi Jim,  
 
Comments in-line below.  
 
Regards,  
Gary  
 

 

From:  "Jim O'Reilly" <jim_oreilly@comcast.net>  
To:  "Gary Murray" <gary_murray@ltx.com>  
Date:  02/26/2009 10:59 AM  
Subject:  Re: Revised Spec syntax 

 

 
 

 

 
Hi, Gary,  
   
Another two questions (in addition to those I sent the other day).  
   
Is it required that any spec variable which appears in any category in a specific spec block also 
appear in the ParamGlobals section of that spec block? (It appears to be the case, based on this 
example).  
   
In the following example, the Flownode Node[17] specifies ac spec "ACSpec.Cat16mhz" in the 
spec pairs section, and executes functional test GrossFunctional.  Test GrossFunctional specfies 
pattern Functional_PatSeq; pattern Functional_PatSeq specifies waveform table LS245pats; 
waveform table LS245pats specifies the period using the value of the spec variable "Per".  This 
all works, since ac spec table "ACSpec" has a parameter called "Per".  
   
What happens if, instead, Node[17] specified ac spec block "ACSpec_2.Cat16mhz_2"?  That 
spec table does NOT have a spec variable called "Per".  Would Envision resolve this by looking in 
spec tables other than those specfied in the SpecPairs section of the flow node? (i.e., even 
though the test specified to use ACSpec_2.Cat16mhz_2, would Envision look there, not find it, 
then start searching other spec blocks)?  If not, then in my view, the spec variables require the 
spec name to determine where to look to resolve the spec name to its value.  Is it required to 
have the SpecPairs section in the flow node?  If not, then I suppose that Envision *could* look in 
all spec blocks to help resolve the spec variable name where it is used (in the waveform table, in 
this case).  Can you determine how this would work?  
   

Since all parameter names are at global scope, there can only be one instance of Per in the 

program. The SpecPairs syntax at the flow node level really only specifies the category to 

use in each of the Spec tables listed, not the set of parameters available to the test object. 

So, in your example, the parameter Per would be looked up by name globally, and since 

it was associated with ACSpec, it's value would be found there. Since ACSpec did not 

have a category selected at the FlowNode level, the last one selected for it (in a previous 

FlowNode) would be used when resolving the value of Per.  
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Get back to me when you can (but, please, don't wait *too* long).  
   
Thanks,  
   
Jim  
   

Multiple Spec objects may be defined for a test program with the requirement that all parameter 
names be unique across all Spec objects. Categories may be different across Spec objects, 
allowing for example a set of categories for timing parameters, and a separate set of categories 

for DC parameters.  

 
    Spec AC_Specs { 

       Category Cat16mhz {  
            Freq = "16MHz";  
            Per = "1/Freq";  
        }  
        Category Cat25mhz {  
            Freq = "25MHz";  
            Per = "1/Freq";  
        }  
        ParamGlobals { 

           Freq { Type = Hz; Comment = "Device Operating Frequency"; }  
            Per { Type = S; Comment = "Device Period"; }  
        }  
    }  
    Spec AC_Specs_2 { 

       Category Cat16mhz_2 {  
            Freq_2 = "16MHz";  
            Per_2 = "1/Freq_2";  
        }  
        Category Cat25mhz_2 {  
            Freq_2 = "25MHz";  
            Per_2 = "1/Freq_2";  
        }  
        ParamGlobals { 

           Freq_2 { Type = Hz; Comment = "Device Operating 

Frequency"; }  
            Per_2 { Type = S; Comment = "Device Period"; }  
        }  
    }  
   
    Mask ACRelaxed { 

       Freq = Typ;  
        Per = Typ; 

   }  
   
    Mask ACRelaxed_2 { 

       Freq_2 = Typ;  
        Per_2 = Typ; 

   }  
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    WaveformTable LS245pats LS245pats { 

       Period "Per"; 

       Cell "all_pins" 0/1 all_pins_01 { 

           Data 6/7; 

       } 

       Cell "all_pins" r/R all_pins_rR { 

           Data 6/7; 

       } 

   }  
   
    PatternSequence Functional_PatSeq { 

       Thread[0] = Single; 

       Zipper = Zipper { 

           Row { LS245pats, Disable = { Bus_Actice_to_Z, 

Bus_Control_pins } } 

           Row { LS245pats, Enable_ = { Bus_Z_to_Active, 

Bus_Control_pins } } 

           Row { LS245pats, ReadWrite = { Bus_Active } } 

           Row { LS245pats, Reset = { Bus_reset, Bus_Control_pins } } 

       } 

       TransactionCount = 2; 

       BasePeriodResolution = Expr { Type = s; } 

   }  
   
    Test Gross_Functional {  
        FinderFilter = ""; 

       Result = Expr { String = "#"; Mode = Output; } 

       LoopExpr = Expr { String = "FALSE"; } 

       LoopNotify = True; 

       LoopDepth = Outside; 

       Mask[0] = DC_Easy; 

       Mask[1] = ACRelaxed; 

       Entry[0] = Functional_Levels; 

       Entry[1] = Functional_PatSeq; 

       PortExpr[0] = Expr { String = ".Result = tm_rslt:PASS"; } 

       PortExpr[1] = Expr { String = ".Result = tm_rslt:FAIL"; } 

   Title[0] = FuncTest; 

       TestMethod = Ftest; 

       Test_enable[0] = Expr { String = "Seq_en:DEFAULT_EXECUTION"; } 

       Test_pins[0] = Expr { String = "all_pins"; } 

       Test_result[0] = Expr { String = "#"; Mode = Output; } 

       Pattern_index[0] = Expr { String = 

"Functional_PatSeq.Thread.Single"; } 

       Simulate_results[0] = Expr { String = "tm_rslt:FLOW_SIM_OFF"; } 

   }  

   
    Node[17] =     FlowNode_  { 

       XCoord = (356,81); 

       Port[0] { 

           To = 7; 

           UIFPort = 88; 

       } 

       Port[1] { 

           To = 18; 

           UIFPort = 178; 

       } 
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       UIFInfo = 272; 

       SpecPairs { 

           ACSpec = Expr { String = "ACSpec.Cat16mhz"; Type = 

INTEGER; } 

           DC_Spec = Expr { String = "DC_Spec.T_25dC"; Type = 

INTEGER; } 

       } 

       TestId = "42"; 

       PortSelect = "Gross_Functional.ExecResult"; 

       Exec = Gross_Functional; 

       EVO_Calibration = envstuE_Fcal; 

   }  
   

   
----- Original Message -----  
From: "Gary Murray" <gary_murray@ltx.com>  
To: <jim_oreilly@ieee.org>  
Sent: Tuesday, February 24, 2009 9:57 AM  
Subject: Revised Spec syntax  
 
>    Spec AC_Specs { 
>    Category Cat16mhz { 
>        tcyc1 = "60ns"; 
>        tcyc = "60nS"; 
>        fmax = "floor(1/(tcyc.Typ.Cat16mhz*1000000)) * 1000000"; 
>        tsys = "10nS"; 
>        tsmp = "10nS"; 
>        trd = "10nS"; 
>        tds.Min = "12nS"; 
>        tdh.Min = "4nS"; 
>        tdval.Max = "10nS"; 
>        tddis.Max = "0S"; 
>        texs.Min = "12nS"; 
>        texh.Min = "4nS"; 
>        truns.Min = "12nS"; 
>        trunh.Min = "0nS"; 
>        tfpcond.Max = "20nS"; 
>        tfpbusy.Max = "25nS"; 
>        tfpint.Max = "20nS"; 
>        t0 = "10nS"; 
>        iogb = "8nS"; 
>        FpSys_ph = "-tcyc/4"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "4"; 
>        TrigLoc = "20"; 
>        tdval1.Max = "10nS"; 
>    } 
>    Category Cat25mhz { 
>        tcyc1 = "40ns"; 
>        tcyc = "1/fmax"; 
>        fmax = "25MHz"; 
>        tsys = "3.5nS/10nS*tcyc"; 



Revision 2 

Sept. 9, 2009 

 
>        tsmp = "3.8nS/10nS*tcyc"; 
>        trd = "3.3nS/10nS*tcyc"; 
>        tds.Min = "6.1nS/10nS*tcyc"; 
>        tdh.Min = "1nS/10nS*tcyc"; 
>        tdval.Max = "4nS/10nS*tcyc"; 
>        tddis.Max = "0nS/10nS*tcyc"; 
>        texs.Min = "5.8nS/10nS*tcyc"; 
>        texh.Min = "1nS/10nS*tcyc"; 
>        truns.Min = "7.5nS/10nS*tcyc"; 
>        trunh.Min = "2nS/10nS*tcyc"; 
>        tfpcond.Max = "5nS/10nS*tcyc"; 
>        tfpbusy.Max = "5nS/10nS*tcyc"; 
>        tfpint.Max = "5nS/10nS*tcyc"; 
>        t0 = "10nS"; 
>        iogb = "tcyc/15"; 
>        FpSys_ph = "-tcyc/4"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "1"; 
>        TrigLoc = "20"; 
>        tdval1.Max = "4nS/10nS*tcyc"; 
>    } 
>    Category Cat33mhz { 
>        tcyc1 = "1/fmax"; 
>        tcyc = "1/fmax"; 
>        fmax = "33MHz"; 
>        tsys = "3.5nS/10nS*tcyc"; 
>        tsmp = "3.8nS/10nS*tcyc"; 
>        trd = "3.3nS/10nS*tcyc"; 
>        tds.Min = "6.1nS/10nS*tcyc"; 
>        tdh.Min = "1nS/10nS*tcyc"; 
>        tdval.Max = "4nS/10nS*tcyc"; 
>        tddis.Max = "0nS/10nS*tcyc"; 
>        texs.Min = "5.8nS/10nS*tcyc"; 
>        texh.Min = "1nS/10nS*tcyc"; 
>        truns.Min = "7.5nS/10nS*tcyc"; 
>        trunh.Min = "2nS/10nS*tcyc"; 
>        tfpcond.Max = "5nS/10nS*tcyc"; 
>        tfpbusy.Max = "5nS/10nS*tcyc"; 
>        tfpint.Max = "5nS/10nS*tcyc"; 
>        t0 = "10nS"; 
>        iogb = "tcyc/15"; 
>        FpSys_ph = "-tcyc/4"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "1"; 
>        TrigLoc = "20"; 
>        tdval1.Max = "4nS/10nS*tcyc"; 
>    } 
>    Category Cat40mhz { 
>        tcyc1 = "25ns"; 
>        tcyc = "1/fmax"; 



Revision 2 

Sept. 9, 2009 

 
>        fmax = "40MHz"; 
>        tsys = "3.5nS/10nS*tcyc"; 
>        tsmp = "3.8nS/10nS*tcyc"; 
>        trd = "3.3nS/10nS*tcyc"; 
>        tds.Min = "6.1nS/10nS*tcyc"; 
>        tdh.Min = "1nS/10nS*tcyc"; 
>        tdval.Max = "5nS/10nS*tcyc"; 
>        tddis.Max = "0nS/10nS*tcyc"; 
>        texs.Min = "5.8nS/10nS*tcyc"; 
>        texh.Min = "1nS/10nS*tcyc"; 
>        truns.Min = "7.5nS/10nS*tcyc"; 
>        trunh.Min = "2nS/10nS*tcyc"; 
>        tfpcond.Max = "5nS/10nS*tcyc"; 
>        tfpbusy.Max = "5nS/10nS*tcyc"; 
>        tfpint.Max = "5nS/10nS*tcyc"; 
>        t0 = "10nS"; 
>        iogb = "tcyc/15"; 
>        FpSys_ph = "-tcyc/4"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "1"; 
>        TrigLoc = "20"; 
>        tdval1.Max = "5nS/10nS*tcyc"; 
>    } 
>    Category Cat50mhz { 
>        tcyc1 = "20ns"; 
>        tcyc = "20nS"; 
>        fmax = "floor(1/(tcyc.Typ.Cat50mhz*1000000)) * 1000000"; 
>        tsys = "7nS"; 
>        tsmp = "7.6nS"; 
>        trd = "6.6nS"; 
>        tds.Min = "12.2nS"; 
>        tdh.Min = "2nS"; 
>        tdval.Max = "-4nS"; 
>        tddis.Max = "0nS"; 
>        texs.Min = "11.6nS"; 
>        texh.Min = "2nS"; 
>        truns.Min = "15nS"; 
>        trunh.Min = "4nS"; 
>        tfpcond.Max = "10nS"; 
>        tfpbusy.Max = "10nS"; 
>        tfpint.Max = "10nS"; 
>        t0 = "10nS"; 
>        iogb = "1.3nS"; 
>        FpSys_ph = "-5nS"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "4"; 
>        TrigLoc = "20"; 
>        tdval1.Max = "4ns"; 
>    } 
>    Category Cat67mhz { 
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>        tcyc1 = "15ns"; 
>        tcyc = "15nS"; 
>        fmax = "floor(1/(tcyc.Typ.Cat67mhz*1000000)) * 1000000"; 
>        tsys = "5.25nS"; 
>        tsmp = "5.7nS"; 
>        trd = "4.95nS"; 
>        tds.Min = "9.15nS"; 
>        tdh.Min = "1.5nS"; 
>        tdval.Max = "3nS"; 
>        tddis.Max = "0nS"; 
>        texs.Min = "8.7nS"; 
>        texh.Min = "1.5nS"; 
>        truns.Min = "11.25nS"; 
>        trunh.Min = "3nS"; 
>        tfpcond.Max = "7.5nS"; 
>        tfpbusy.Max = "7.5nS"; 
>        tfpint.Max = "7.5nS"; 
>        t0 = "10nS"; 
>        iogb = "1nS"; 
>        FpSys_ph = "-3.75nS"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "3"; 
>        TrigLoc = "20"; 
>        tdval1.Max = "3ns"; 
>    } 
>    Category Cat80mhz { 
>        tcyc1 = "12.5ns"; 
>        tcyc = "12.5nS"; 
>        fmax = "floor(1/(tcyc.Typ.Cat80mhz*1000000)) * 1000000"; 
>        tsys = "4.375nS"; 
>        tsmp = "4.75nS"; 
>        trd = "4.125nS"; 
>        tds.Min = "7.625nS"; 
>        tdh.Min = "1.25nS"; 
>        tdval.Max = "2.5nS"; 
>        tddis.Max = "0nS"; 
>        texs.Min = "7.25nS"; 
>        texh.Min = "1.25nS"; 
>        truns.Min = "9.375nS"; 
>        trunh.Min = "2.5nS"; 
>        tfpcond.Max = "6.25nS"; 
>        tfpbusy.Max = "6.25nS"; 
>        tfpint.Max = "6.25nS"; 
>        t0 = "10nS"; 
>        iogb = "833pS"; 
>        FpSys_ph = "-3.125nS"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "2"; 
>        TrigLoc = "20"; 
>        tdval1.Max = "0ns"; 
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>    } 
>    Category Shmoo { 
>        tcyc1 = "20nS"; 
>        tcyc.Min = "8nS"; 
>        tcyc.Typ = "20nS"; 
>        tcyc.Max = "tcyc1"; 
>        fmax = "1/tcyc"; 
>        tsys = "3.5nS/10nS*tcyc"; 
>        tsmp = "3.8nS/10nS*tcyc"; 
>        trd = "3.3nS/10nS*tcyc"; 
>        tds.Min = "6.1nS/10nS*tcyc"; 
>        tdh.Min = "1.0nS/10nS*tcyc"; 
>        tdval.Max = "3.5nS/10nS*tcyc"; 
>        tddis.Max = "0nS/10nS*tcyc"; 
>        texs.Min = "5.8nS/10nS*tcyc"; 
>        texh.Min = "1nS/10nS*tcyc"; 
>        truns.Min = "7.5nS/10nS*tcyc"; 
>        trunh.Min = "2nS/10nS*tcyc"; 
>        tfpcond.Max = "5nS/10nS*tcyc"; 
>        tfpbusy.Max = "5nS/10nS*tcyc"; 
>        tfpint.Max = "5nS/10nS*tcyc"; 
>        t0 = "tcyc/2"; 
>        iogb = "tcyc/15"; 
>        FpSys_ph = "-tcyc/4"; 
>        FpSys.Min = "0nS"; 
>        FpSys.Typ = "5nS"; 
>        FpSys.Max = "15nS"; 
>        Half_cyc = "tcyc/2"; 
>        SpeedBin = "1"; 
>        TrigLoc = "3900"; 
>        tdval1.Max = "3.5nS/10nS*tcyc"; 
>    } 
>    ParamGlobals { 
>            tcyc1 { Type = s; Comment = "Characterization DUT Period"; } 
>            tcyc { Type = s; Comment = "DUT Period"; } 
>            fmax { Type = Hz; Comment = "Device Maximum Frequency"; } 
>            tsys { Type = s; Comment = "Clk2xSys Phase"; } 
>            tsmp { Type = s; Comment = "Clk2xSmp Phase"; } 
>            trd { Type = s; Comment = "Clk2xRd Phase"; } 
>            tds { Type = s; Comment = "Databus Setup Time"; } 
>            tdh { Type = s; Comment = "Databus Hold Time"; } 
>            tdval { Type = s; Comment = "Databus\/Tag Valid Time"; } 
>            tddis { Type = s; Comment = "Databus Disable"; } 
>            texs { Type = s; Comment = "Exception Setup Time"; } 
>            texh { Type = s; Comment = "Exception Hold Time"; } 
>            truns { Type = s; Comment = "Run Setup Time"; } 
>            trunh { Type = s; Comment = "Run Hold Time"; } 
>            tfpcond { Type = s; Comment = "FpCond Valid Time"; } 
>            tfpbusy { Type = s; Comment = "FpBusy Valid Time"; } 
>            tfpint { Type = s; Comment = "FpInt Valid Time"; } 
>            t0 { Type = s; Comment = "Tester T0 Offset"; } 
>            iogb { Type = s; Comment = "I\/O Guardband"; } 
>            FpSys_ph { Type = s; Comment = "FpSysOut Strobe Phase"; } 
>            FpSys { Type = s; Comment = "FpSysOut Prop Delay"; } 
>            Half_cyc { Type = s; Comment = "Clock Width"; } 
>            SpeedBin { Type = SCALAR; } 
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>            TrigLoc { Type = SCALAR; } 
>            tdval1 { Type = s; } 
>    } 
> } 
> 
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Appendix B 

Hi Jim, 
  
As far as the UltraFlex goes you can have Multiple Ac & DC Specsheets but if they are used in 
the Same Active Job, you cannot have 
Duplicate spec names. 
  
From Version 7.10 Documentation: 
  

Multiple Specs Sheets Per Job  

A single job can use multiple AC or DC Specs sheets. Sheets in a job can refer 

to any of the specs defined on any of the specs sheets in the job. Use the Job 

List sheet to specify the specs sheets to be used in the job.  

Note:  

 

If there are multiple AC or DC Specs sheets in a job, all spec name symbols on 

the sheets must be unique. Duplicate names among the sheets are not allowed. 

If multiple specs sheets in a job define the same spec symbol name, a validation 

error results.  

 

Category and selector names can be shared among the multiple specs sheets in 

a job. The uniqueness requirement applies only to the spec symbol names.  

A workbook can contain any number of AC and DC Specs sheets. If the sheets 

are not used in the same job, they can contain duplicate spec symbol names. It 

is assumed that specs sheets that have duplicate spec symbol names will be 

used in different jobs.  

  

  

  
I haven't used the Flex for a while but I did a quick check of the help and found this:  (Sounds 
more limited than the UltraFlex). 
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----- Original Message -----  
From: Jim O'Reilly  
To: Phil Bergeron  
Sent: Thursday, August 20, 2009 1:16 PM 
Subject: IGXL AC, DC Spec sheets 

 
Phil, 
  
Good to talk with ya - enjoy the time off while you can. 
  
The two issues I'd like to know about IGXL and AC/DC spec sheets are: 

1. Can you have more than one AC specsheet (or more than one DC spec sheet) in a 
program?  

2. If multiple AC or multiple DC specsheets are allowed, can variable names (symbols, in 
IGXL terminology - see below) be reused in more than one AC (or DC) specsheet?  

3. If either of the above (or both) are true, what versions of the software first allow them? 

At your convenience, let me know what you can find out. 
  
Thanks, 
  
Jim 
  

DFF 1.0 AC Specs   
 

 
 

       

   Selector Commercial  

 Symbol Value Name Val Typ Comment 

 tplh  30.E-09max_AC Max  10.E-09  

 tphl  40.E-09max_AC Max  10.E-09  

 tpzh  40.E-09max_AC Max  10.E-09  

 tpzl  40.E-09max_AC Max  10.E-09  

 tphz  40.E-09max_AC Max  10.E-09  

 tplz  60.E-09max_AC Max  15.E-09  
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Variable scoping rules. 

1. Within a test or flow, local scope consists of local variables and parameters.  Each 

name must be unique in that context. 

2. Variables, constants, and parameters (including spec variables) declared in the 

local scope will hide any variables, constants, or parameters of the same name 

which are declared in the global scope.  Global scope includes specs declared in 

Spec blocks, global variables declared in named or unnamed variables blocks at 

the global scope, TestProgram variables, and all Test or Flow objects (created by 

instantiating TestTypes or FlowTypes). 

3. To access the variables in the upper level scope, the complete variable or spec 

access syntax can be used. 


