
Revision 2

Sept. 9, 2009

Spec/Category/SpecVariable handling proposals for P1450.4

In all discussions below, the term “spec variables” refer to variables defined within a

spec block, and which appear in one or more category subsections of a spec block or

blocks. Further, spec variables will have one or more selector subvalues (i.e., min,

typ, max, or meas), as specified by IEEE 1450-1999, chapter 19 “Spec and Selector

Blocks”, and selected by the Category and Selector statements of the PatternExec

block (IEEE 1450-1999, chapter 16) or by parameters of P1450.4 Test or Flow blocks.

As defined in IEEE 1450-1999, spec variables (used for specifying timing or levels

values) are global in scope (accessible to all levels). The combination of the category

name + variable name must be named unique.

Finally, even though the categories and variables are syntactically contained within a

spec block, a spec block has no semantic meaning. It is not used to provide additional

scoping.

1. Status quo for dot0, dot1, dot2

a. No changes, no additions, to what’s specified in STIL dot0, dot1, dot2

b. All spec variables are global, and combination of category+variable name

MUST be unique.

c. The set of variables within a particular category can be contained in one

spec block, or spread out over multiple spec blocks.

2. Add spec block name to scoping hierarchy, and allow duplication of

“category+variable name” in multiple (uniquely named) spec blocks.

a. All spec variables and categories are scoped to a particular spec block,

which MUST be named in a particular context. If variables or categories

are NOT named in the currently active spec block(s), they cannot be

resolved. Can reuse category and variable names in different spec blocks.

b. Note that this is a major change from existing STIL practice, and will

present some issues when translating to LTX Envision (which uses a

scheme very similar to #2 above). We believe that these issues can be

dealt with by creating Envision spec variable names which are a

concatenation of the spec block name and spec variable name. It’s a bit

clumsy, but it will work. When translating Envision code to STIL (if that

is ever done), no problems arise, since an Envision spec variable is global

in scope, and would not be reused in different spec blocks.

Because existing languages use either opt 1 or opt 4 models, I propose that we include

BOTH in dot4, allowing the user to choose which model to use via a STIL Flow 2009

statement, with optional Level1 or Level2 token. To be agnostic here, there is no default

– the user MUST specify which model is being used. Comments?

STIL 1.0 {

(Flow 2009 (Level1 | Level2) ;)+

}

Revision 2

Sept. 9, 2009

Comparison of existing languages with respect to the above

proposals

LTX Envision:

Directly compatible with opt. 1. If opt. 4 is used, some name translation (most likely by

appending the spec block name, and perhaps the category name, to the spec variable)

must be used to avoid potential duplication of spec variable names, which is not allowed

currently in Envision. (See appendix A below). Referring to the discussion in appendix

A (in which we’re discussing a spec variable named “Per”, to be used for setting the

tester period), the key phrase is “Since all parameter names are at global scope, there can

only be one instance of Per in the program.”

Teradyne IGXL:

Directly compatible with opt. 1. If opt. 4 is used, some name translation (most likely by

appending the spec block name, and perhaps the category name, to the spec variable)

must be used to avoid potential duplication of spec variable names, which is not allowed

currently in IG-XL. (see Appendix B below). See the key sections regarding multiple

spec sheets (the IG-XL equivalent of a spec block).

Multiple Specs Sheets Per Job
A single job can use multiple AC or DC Specs sheets. Sheets in a job can refer to

any of the specs defined on any of the specs sheets in the job. Use the Job List

sheet to specify the specs sheets to be used in the job.

Note:
If there are multiple AC or DC Specs sheets in a job, all spec name symbols on

the sheets must be unique. Duplicate names among the sheets are not allowed. If

multiple specs sheets in a job define the same spec symbol name, a validation

error results.

These comments regarding allowing multiple spec sheets in a job (the IG-XL equivalent

of a STIL TestProgram block) refer to the latest version (7.1) of IG-XL. Earlier versions

allowed only one DC spec sheet and one AC spec sheet per job (and with the constraint

of unique spec sheet variable names).

Advantest OTPL:

Directly compatible with opt. 4.

Schlumberger/NPTest/Credence/LTXC ASAP, Sapphire, and Diamond:

Directly compatible with opt. 4.

Teradyne IG973/IG971/IG953: still gathering information. Believe that duplicate spec

names are not allowed

Teradyne Image: procedural only, not block-structured. C-language conventions

regarding variable names apply.

Revision 2

Sept. 9, 2009

Revision 2

Sept. 9, 2009

Appendix A

Hi Jim,

Comments in-line below.

Regards,
Gary

From: "Jim O'Reilly" <jim_oreilly@comcast.net>
To: "Gary Murray" <gary_murray@ltx.com>
Date: 02/26/2009 10:59 AM
Subject: Re: Revised Spec syntax

Hi, Gary,

Another two questions (in addition to those I sent the other day).

Is it required that any spec variable which appears in any category in a specific spec block also
appear in the ParamGlobals section of that spec block? (It appears to be the case, based on this
example).

In the following example, the Flownode Node[17] specifies ac spec "ACSpec.Cat16mhz" in the
spec pairs section, and executes functional test GrossFunctional. Test GrossFunctional specfies
pattern Functional_PatSeq; pattern Functional_PatSeq specifies waveform table LS245pats;
waveform table LS245pats specifies the period using the value of the spec variable "Per". This
all works, since ac spec table "ACSpec" has a parameter called "Per".

What happens if, instead, Node[17] specified ac spec block "ACSpec_2.Cat16mhz_2"? That
spec table does NOT have a spec variable called "Per". Would Envision resolve this by looking in
spec tables other than those specfied in the SpecPairs section of the flow node? (i.e., even
though the test specified to use ACSpec_2.Cat16mhz_2, would Envision look there, not find it,
then start searching other spec blocks)? If not, then in my view, the spec variables require the
spec name to determine where to look to resolve the spec name to its value. Is it required to
have the SpecPairs section in the flow node? If not, then I suppose that Envision *could* look in
all spec blocks to help resolve the spec variable name where it is used (in the waveform table, in
this case). Can you determine how this would work?

Since all parameter names are at global scope, there can only be one instance of Per in the

program. The SpecPairs syntax at the flow node level really only specifies the category to

use in each of the Spec tables listed, not the set of parameters available to the test object.

So, in your example, the parameter Per would be looked up by name globally, and since

it was associated with ACSpec, it's value would be found there. Since ACSpec did not

have a category selected at the FlowNode level, the last one selected for it (in a previous

FlowNode) would be used when resolving the value of Per.

Revision 2

Sept. 9, 2009

Get back to me when you can (but, please, don't wait *too* long).

Thanks,

Jim

Multiple Spec objects may be defined for a test program with the requirement that all parameter
names be unique across all Spec objects. Categories may be different across Spec objects,
allowing for example a set of categories for timing parameters, and a separate set of categories

for DC parameters.

 Spec AC_Specs {

 Category Cat16mhz {
 Freq = "16MHz";
 Per = "1/Freq";
 }
 Category Cat25mhz {
 Freq = "25MHz";
 Per = "1/Freq";
 }
 ParamGlobals {

 Freq { Type = Hz; Comment = "Device Operating Frequency"; }
 Per { Type = S; Comment = "Device Period"; }
 }
 }
 Spec AC_Specs_2 {

 Category Cat16mhz_2 {
 Freq_2 = "16MHz";
 Per_2 = "1/Freq_2";
 }
 Category Cat25mhz_2 {
 Freq_2 = "25MHz";
 Per_2 = "1/Freq_2";
 }
 ParamGlobals {

 Freq_2 { Type = Hz; Comment = "Device Operating

Frequency"; }
 Per_2 { Type = S; Comment = "Device Period"; }
 }
 }

 Mask ACRelaxed {

 Freq = Typ;
 Per = Typ;

 }

 Mask ACRelaxed_2 {

 Freq_2 = Typ;
 Per_2 = Typ;

 }

Revision 2

Sept. 9, 2009

 WaveformTable LS245pats LS245pats {

 Period "Per";

 Cell "all_pins" 0/1 all_pins_01 {

 Data 6/7;

 }

 Cell "all_pins" r/R all_pins_rR {

 Data 6/7;

 }

 }

 PatternSequence Functional_PatSeq {

 Thread[0] = Single;

 Zipper = Zipper {

 Row { LS245pats, Disable = { Bus_Actice_to_Z,

Bus_Control_pins } }

 Row { LS245pats, Enable_ = { Bus_Z_to_Active,

Bus_Control_pins } }

 Row { LS245pats, ReadWrite = { Bus_Active } }

 Row { LS245pats, Reset = { Bus_reset, Bus_Control_pins } }

 }

 TransactionCount = 2;

 BasePeriodResolution = Expr { Type = s; }

 }

 Test Gross_Functional {
 FinderFilter = "";

 Result = Expr { String = "#"; Mode = Output; }

 LoopExpr = Expr { String = "FALSE"; }

 LoopNotify = True;

 LoopDepth = Outside;

 Mask[0] = DC_Easy;

 Mask[1] = ACRelaxed;

 Entry[0] = Functional_Levels;

 Entry[1] = Functional_PatSeq;

 PortExpr[0] = Expr { String = ".Result = tm_rslt:PASS"; }

 PortExpr[1] = Expr { String = ".Result = tm_rslt:FAIL"; }

 Title[0] = FuncTest;

 TestMethod = Ftest;

 Test_enable[0] = Expr { String = "Seq_en:DEFAULT_EXECUTION"; }

 Test_pins[0] = Expr { String = "all_pins"; }

 Test_result[0] = Expr { String = "#"; Mode = Output; }

 Pattern_index[0] = Expr { String =

"Functional_PatSeq.Thread.Single"; }

 Simulate_results[0] = Expr { String = "tm_rslt:FLOW_SIM_OFF"; }

 }

 Node[17] = FlowNode_ {

 XCoord = (356,81);

 Port[0] {

 To = 7;

 UIFPort = 88;

 }

 Port[1] {

 To = 18;

 UIFPort = 178;

 }

Revision 2

Sept. 9, 2009

 UIFInfo = 272;

 SpecPairs {

 ACSpec = Expr { String = "ACSpec.Cat16mhz"; Type =

INTEGER; }

 DC_Spec = Expr { String = "DC_Spec.T_25dC"; Type =

INTEGER; }

 }

 TestId = "42";

 PortSelect = "Gross_Functional.ExecResult";

 Exec = Gross_Functional;

 EVO_Calibration = envstuE_Fcal;

 }

----- Original Message -----
From: "Gary Murray" <gary_murray@ltx.com>
To: <jim_oreilly@ieee.org>
Sent: Tuesday, February 24, 2009 9:57 AM
Subject: Revised Spec syntax

> Spec AC_Specs {
> Category Cat16mhz {
> tcyc1 = "60ns";
> tcyc = "60nS";
> fmax = "floor(1/(tcyc.Typ.Cat16mhz*1000000)) * 1000000";
> tsys = "10nS";
> tsmp = "10nS";
> trd = "10nS";
> tds.Min = "12nS";
> tdh.Min = "4nS";
> tdval.Max = "10nS";
> tddis.Max = "0S";
> texs.Min = "12nS";
> texh.Min = "4nS";
> truns.Min = "12nS";
> trunh.Min = "0nS";
> tfpcond.Max = "20nS";
> tfpbusy.Max = "25nS";
> tfpint.Max = "20nS";
> t0 = "10nS";
> iogb = "8nS";
> FpSys_ph = "-tcyc/4";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "4";
> TrigLoc = "20";
> tdval1.Max = "10nS";
> }
> Category Cat25mhz {
> tcyc1 = "40ns";
> tcyc = "1/fmax";
> fmax = "25MHz";
> tsys = "3.5nS/10nS*tcyc";

Revision 2

Sept. 9, 2009

> tsmp = "3.8nS/10nS*tcyc";
> trd = "3.3nS/10nS*tcyc";
> tds.Min = "6.1nS/10nS*tcyc";
> tdh.Min = "1nS/10nS*tcyc";
> tdval.Max = "4nS/10nS*tcyc";
> tddis.Max = "0nS/10nS*tcyc";
> texs.Min = "5.8nS/10nS*tcyc";
> texh.Min = "1nS/10nS*tcyc";
> truns.Min = "7.5nS/10nS*tcyc";
> trunh.Min = "2nS/10nS*tcyc";
> tfpcond.Max = "5nS/10nS*tcyc";
> tfpbusy.Max = "5nS/10nS*tcyc";
> tfpint.Max = "5nS/10nS*tcyc";
> t0 = "10nS";
> iogb = "tcyc/15";
> FpSys_ph = "-tcyc/4";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "1";
> TrigLoc = "20";
> tdval1.Max = "4nS/10nS*tcyc";
> }
> Category Cat33mhz {
> tcyc1 = "1/fmax";
> tcyc = "1/fmax";
> fmax = "33MHz";
> tsys = "3.5nS/10nS*tcyc";
> tsmp = "3.8nS/10nS*tcyc";
> trd = "3.3nS/10nS*tcyc";
> tds.Min = "6.1nS/10nS*tcyc";
> tdh.Min = "1nS/10nS*tcyc";
> tdval.Max = "4nS/10nS*tcyc";
> tddis.Max = "0nS/10nS*tcyc";
> texs.Min = "5.8nS/10nS*tcyc";
> texh.Min = "1nS/10nS*tcyc";
> truns.Min = "7.5nS/10nS*tcyc";
> trunh.Min = "2nS/10nS*tcyc";
> tfpcond.Max = "5nS/10nS*tcyc";
> tfpbusy.Max = "5nS/10nS*tcyc";
> tfpint.Max = "5nS/10nS*tcyc";
> t0 = "10nS";
> iogb = "tcyc/15";
> FpSys_ph = "-tcyc/4";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "1";
> TrigLoc = "20";
> tdval1.Max = "4nS/10nS*tcyc";
> }
> Category Cat40mhz {
> tcyc1 = "25ns";
> tcyc = "1/fmax";

Revision 2

Sept. 9, 2009

> fmax = "40MHz";
> tsys = "3.5nS/10nS*tcyc";
> tsmp = "3.8nS/10nS*tcyc";
> trd = "3.3nS/10nS*tcyc";
> tds.Min = "6.1nS/10nS*tcyc";
> tdh.Min = "1nS/10nS*tcyc";
> tdval.Max = "5nS/10nS*tcyc";
> tddis.Max = "0nS/10nS*tcyc";
> texs.Min = "5.8nS/10nS*tcyc";
> texh.Min = "1nS/10nS*tcyc";
> truns.Min = "7.5nS/10nS*tcyc";
> trunh.Min = "2nS/10nS*tcyc";
> tfpcond.Max = "5nS/10nS*tcyc";
> tfpbusy.Max = "5nS/10nS*tcyc";
> tfpint.Max = "5nS/10nS*tcyc";
> t0 = "10nS";
> iogb = "tcyc/15";
> FpSys_ph = "-tcyc/4";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "1";
> TrigLoc = "20";
> tdval1.Max = "5nS/10nS*tcyc";
> }
> Category Cat50mhz {
> tcyc1 = "20ns";
> tcyc = "20nS";
> fmax = "floor(1/(tcyc.Typ.Cat50mhz*1000000)) * 1000000";
> tsys = "7nS";
> tsmp = "7.6nS";
> trd = "6.6nS";
> tds.Min = "12.2nS";
> tdh.Min = "2nS";
> tdval.Max = "-4nS";
> tddis.Max = "0nS";
> texs.Min = "11.6nS";
> texh.Min = "2nS";
> truns.Min = "15nS";
> trunh.Min = "4nS";
> tfpcond.Max = "10nS";
> tfpbusy.Max = "10nS";
> tfpint.Max = "10nS";
> t0 = "10nS";
> iogb = "1.3nS";
> FpSys_ph = "-5nS";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "4";
> TrigLoc = "20";
> tdval1.Max = "4ns";
> }
> Category Cat67mhz {

Revision 2

Sept. 9, 2009

> tcyc1 = "15ns";
> tcyc = "15nS";
> fmax = "floor(1/(tcyc.Typ.Cat67mhz*1000000)) * 1000000";
> tsys = "5.25nS";
> tsmp = "5.7nS";
> trd = "4.95nS";
> tds.Min = "9.15nS";
> tdh.Min = "1.5nS";
> tdval.Max = "3nS";
> tddis.Max = "0nS";
> texs.Min = "8.7nS";
> texh.Min = "1.5nS";
> truns.Min = "11.25nS";
> trunh.Min = "3nS";
> tfpcond.Max = "7.5nS";
> tfpbusy.Max = "7.5nS";
> tfpint.Max = "7.5nS";
> t0 = "10nS";
> iogb = "1nS";
> FpSys_ph = "-3.75nS";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "3";
> TrigLoc = "20";
> tdval1.Max = "3ns";
> }
> Category Cat80mhz {
> tcyc1 = "12.5ns";
> tcyc = "12.5nS";
> fmax = "floor(1/(tcyc.Typ.Cat80mhz*1000000)) * 1000000";
> tsys = "4.375nS";
> tsmp = "4.75nS";
> trd = "4.125nS";
> tds.Min = "7.625nS";
> tdh.Min = "1.25nS";
> tdval.Max = "2.5nS";
> tddis.Max = "0nS";
> texs.Min = "7.25nS";
> texh.Min = "1.25nS";
> truns.Min = "9.375nS";
> trunh.Min = "2.5nS";
> tfpcond.Max = "6.25nS";
> tfpbusy.Max = "6.25nS";
> tfpint.Max = "6.25nS";
> t0 = "10nS";
> iogb = "833pS";
> FpSys_ph = "-3.125nS";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "2";
> TrigLoc = "20";
> tdval1.Max = "0ns";

Revision 2

Sept. 9, 2009

> }
> Category Shmoo {
> tcyc1 = "20nS";
> tcyc.Min = "8nS";
> tcyc.Typ = "20nS";
> tcyc.Max = "tcyc1";
> fmax = "1/tcyc";
> tsys = "3.5nS/10nS*tcyc";
> tsmp = "3.8nS/10nS*tcyc";
> trd = "3.3nS/10nS*tcyc";
> tds.Min = "6.1nS/10nS*tcyc";
> tdh.Min = "1.0nS/10nS*tcyc";
> tdval.Max = "3.5nS/10nS*tcyc";
> tddis.Max = "0nS/10nS*tcyc";
> texs.Min = "5.8nS/10nS*tcyc";
> texh.Min = "1nS/10nS*tcyc";
> truns.Min = "7.5nS/10nS*tcyc";
> trunh.Min = "2nS/10nS*tcyc";
> tfpcond.Max = "5nS/10nS*tcyc";
> tfpbusy.Max = "5nS/10nS*tcyc";
> tfpint.Max = "5nS/10nS*tcyc";
> t0 = "tcyc/2";
> iogb = "tcyc/15";
> FpSys_ph = "-tcyc/4";
> FpSys.Min = "0nS";
> FpSys.Typ = "5nS";
> FpSys.Max = "15nS";
> Half_cyc = "tcyc/2";
> SpeedBin = "1";
> TrigLoc = "3900";
> tdval1.Max = "3.5nS/10nS*tcyc";
> }
> ParamGlobals {
> tcyc1 { Type = s; Comment = "Characterization DUT Period"; }
> tcyc { Type = s; Comment = "DUT Period"; }
> fmax { Type = Hz; Comment = "Device Maximum Frequency"; }
> tsys { Type = s; Comment = "Clk2xSys Phase"; }
> tsmp { Type = s; Comment = "Clk2xSmp Phase"; }
> trd { Type = s; Comment = "Clk2xRd Phase"; }
> tds { Type = s; Comment = "Databus Setup Time"; }
> tdh { Type = s; Comment = "Databus Hold Time"; }
> tdval { Type = s; Comment = "Databus\/Tag Valid Time"; }
> tddis { Type = s; Comment = "Databus Disable"; }
> texs { Type = s; Comment = "Exception Setup Time"; }
> texh { Type = s; Comment = "Exception Hold Time"; }
> truns { Type = s; Comment = "Run Setup Time"; }
> trunh { Type = s; Comment = "Run Hold Time"; }
> tfpcond { Type = s; Comment = "FpCond Valid Time"; }
> tfpbusy { Type = s; Comment = "FpBusy Valid Time"; }
> tfpint { Type = s; Comment = "FpInt Valid Time"; }
> t0 { Type = s; Comment = "Tester T0 Offset"; }
> iogb { Type = s; Comment = "I\/O Guardband"; }
> FpSys_ph { Type = s; Comment = "FpSysOut Strobe Phase"; }
> FpSys { Type = s; Comment = "FpSysOut Prop Delay"; }
> Half_cyc { Type = s; Comment = "Clock Width"; }
> SpeedBin { Type = SCALAR; }

Revision 2

Sept. 9, 2009

> TrigLoc { Type = SCALAR; }
> tdval1 { Type = s; }
> }
> }
>

Revision 2

Sept. 9, 2009

Appendix B

Hi Jim,

As far as the UltraFlex goes you can have Multiple Ac & DC Specsheets but if they are used in
the Same Active Job, you cannot have
Duplicate spec names.

From Version 7.10 Documentation:

Multiple Specs Sheets Per Job

A single job can use multiple AC or DC Specs sheets. Sheets in a job can refer

to any of the specs defined on any of the specs sheets in the job. Use the Job

List sheet to specify the specs sheets to be used in the job.

Note:

If there are multiple AC or DC Specs sheets in a job, all spec name symbols on

the sheets must be unique. Duplicate names among the sheets are not allowed.

If multiple specs sheets in a job define the same spec symbol name, a validation

error results.

Category and selector names can be shared among the multiple specs sheets in

a job. The uniqueness requirement applies only to the spec symbol names.

A workbook can contain any number of AC and DC Specs sheets. If the sheets

are not used in the same job, they can contain duplicate spec symbol names. It

is assumed that specs sheets that have duplicate spec symbol names will be

used in different jobs.

I haven't used the Flex for a while but I did a quick check of the help and found this: (Sounds
more limited than the UltraFlex).

Revision 2

Sept. 9, 2009

----- Original Message -----
From: Jim O'Reilly
To: Phil Bergeron
Sent: Thursday, August 20, 2009 1:16 PM
Subject: IGXL AC, DC Spec sheets

Phil,

Good to talk with ya - enjoy the time off while you can.

The two issues I'd like to know about IGXL and AC/DC spec sheets are:

1. Can you have more than one AC specsheet (or more than one DC spec sheet) in a
program?

2. If multiple AC or multiple DC specsheets are allowed, can variable names (symbols, in
IGXL terminology - see below) be reused in more than one AC (or DC) specsheet?

3. If either of the above (or both) are true, what versions of the software first allow them?

At your convenience, let me know what you can find out.

Thanks,

Jim

DFF 1.0 AC Specs

 Selector Commercial

 Symbol Value Name Val Typ Comment

 tplh 30.E-09max_AC Max 10.E-09

 tphl 40.E-09max_AC Max 10.E-09

 tpzh 40.E-09max_AC Max 10.E-09

 tpzl 40.E-09max_AC Max 10.E-09

 tphz 40.E-09max_AC Max 10.E-09

 tplz 60.E-09max_AC Max 15.E-09

Revision 2

Sept. 9, 2009

Variable scoping rules.

1. Within a test or flow, local scope consists of local variables and parameters. Each

name must be unique in that context.

2. Variables, constants, and parameters (including spec variables) declared in the

local scope will hide any variables, constants, or parameters of the same name

which are declared in the global scope. Global scope includes specs declared in

Spec blocks, global variables declared in named or unnamed variables blocks at

the global scope, TestProgram variables, and all Test or Flow objects (created by

instantiating TestTypes or FlowTypes).

3. To access the variables in the upper level scope, the complete variable or spec

access syntax can be used.

