
Behavior of PreActions Bypass statement for Tests/Flows

test_exec_stmt = TestExec; | FuncExec func_stmt | FuncExec { (func_stmt)* } | flownode_stmt+

bypass_stmt = Bypass (GoTo <Pass | Fail | VAR_NAME > (SkipActions));

1. Bypass; Skip test, execute PostActions and either PassActions or FailActions, depending on state
of execResult for test or flow. (execResult can be forced to a specific state prior to Bypass statement.

2. Bypass GoTo Pass; Skip test, skip PostActions, and execute PassActions.

3. Bypass GoTo Fail; Skip test, skip PostActions, and execute FailActions.

4. Bypass GoTo <Pass | Fail | <var_name> > SkipActions; Skip test, skip PostActions, skip
PassActions or FailActions and return.

P
re

A
c
ti
o
n
s

P
o
s
tA

c
ti
o
n
s

A
rb

it
e
r

PassActions

FailActions

Entry

Exit

test_exec_stmt

PreActions {
<pre_actions prior to Bypass>
Bypass;
<pre_actions following Bypass> (NOT EXECUTED)

}

P
re

A
c
ti
o
n
s

P
o
s
tA

c
ti
o
n
s

A
rb

it
e
r

PassActions

FailActions

Entry

Exit

test_exec_stmt

PreActions {
<pre_actions prior to Bypass>
Bypass GoTo Pass; | Bypass GoTo <var_name>;
// <var_name> equates to Pass,
// either as a string (“[pP][aA][sS][sS]”)
// or an integer (0 = Pass, non-zero = Fail)

<pre_actions following Bypass> (NOT EXECUTED)
}

P
re

A
c
ti
o
n
s

P
o
s
tA

c
ti
o
n
s

A
rb

it
e
r

PassActions

FailActions

Entry

Exit

test_exec_stmt

PreActions {
<pre_actions prior to Bypass>
Bypass GoTo Fail; | Bypass GoTo <var_name>;
// <var_name> equates to Fail,
// either as a string (“[fF][aA][iI][lL]”)
// or an integer (0 = Pass, non-zero = Fail)
<pre_actions following Bypass> (NOT EXECUTED)

}

P
re

A
c
ti
o
n
s

P
o
s
tA

c
ti
o
n
s

A
rb

it
e
r

PassActions

FailActions

Entry

Exit

test_exec_stmt

PreActions {
<pre_actions prior to Bypass>
Bypass GoTo <Pass | Fail> SkipActions; |
Bypass GoTo <var_name> SkipActions;
// <var_name> equates to Pass or Fail,
// either as a string (“[pP][aA][sS][sS]” or “[fF][aA][iI][lL]”)
// or an integer (0 = Pass, non-zero = Fail)
<pre_actions following Bypass> (NOT EXECUTED)

}

Behavior of PreActions Bypass statement for FlowNodes

flownode_exec_stmt = TestExec execute_stmt

bypass_stmt = Bypass (GoTo <PORT_LABEL | VAR_NAME > (SkipActions));

1. Bypass; Skip test, execute PostActions and ExitPorts Actions as determined by Arbiter. Variables
and values used to control exit port arbitration can be set to a specific state prior to Bypass statement.

2. Bypass GoTo <PORT_LABEL | VAR_NAME>; Skip test, skip PostActions, execute ExitPorts Actions

for ExitPort specified by PORT_LABEL or VAR_NAME. PORT_LABEL is a string identifying the desired exit port.
If an empty string, no bypass action occurs. VAR_NAME is either a string variable or an integer variable. If
a string variable, it specifies the bypass exit port by label, unless it’s an empty string, in which case no
bypass action occurs. If an integer variable, it specifies the bypass exit port by index (based on the
ordinal order of the exit ports, from top of list to bottom, with the first index being 0).

3. Bypass GoTo <PORT_LABEL | VAR_NAME> SkipActions; Skip test, skip PostActions, skip

ExitPorts Actions, and return via the exit port specified by PORT_LABEL or VAR_NAME. PORT_LABEL is a
string identifying the desired exit port. If an empty string, no bypass action occurs. VAR_NAME is
either a string variable or an integer variable. If a string variable, it specifies the bypass exit port by
label, unless it’s an empty string, in which case no bypass action occurs. If an integer variable, it
specifies the bypass exit port by index (based on the ordinal order of the exit ports, from top of list to
bottom, with the first index being 0).

P
re

A
c
ti
o
n
s

P
o
s
tA

c
ti
o
n
s

A
rb

it
e
r

Entry

flownode_exec_stmt

FlowNode

Exit Ports

Port PORTLABEL1

Port PORTLABEL2

Port PORTLABELN

PreActions {
<pre_actions prior to Bypass>
Bypass;
<pre_actions following Bypass> (NOT EXECUTED)

}

P
re

A
c
ti
o
n
s

P
o
s
tA

c
ti
o
n
s

A
rb

it
e
r

Entry

flownode_exec_stmt

FlowNode

Exit Ports

Port PORTLABEL1

Port PORTLABEL2

Port PORTLABELN

PreActions {
<pre_actions prior to Bypass>
Bypass GoTo PORTLABEL1;
<pre_actions following Bypass> (NOT EXECUTED)

}

P
re

A
c
ti
o
n
s

P
o
s
tA

c
ti
o
n
s

A
rb

it
e
r

Entry

flownode_exec_stmt

FlowNode

Exit Ports

Port PORTLABEL1

Port PORTLABEL2

Port PORTLABELN

PreActions {
<pre_actions prior to Bypass>
Bypass GoTo PORTLABEL1 SkipActions;
<pre_actions following Bypass> (NOT EXECUTED)

}

