
P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 1 of 12

1.0 Top-Down Conceptual View

The P1450.4 constructs will reside within a IEEE 1450-1999 STIL Std file. Its top level
constructs will add to the STIL top level constructs/keywords. Figure1 shows the TestPro-
gram block, TestModuleDefs, TestMethodDef and EntryPointDefs blocks. The “Defs”
blocks contain all definitions of their respective definition blocks and parallel the Macro-
Def block in the 1450.0 STIL standard construct.

FIGURE 1. Top Level Test Program Flow Constructs Diagram

2.0 Test Program Flow Extension Terms

2.1 TestProgram Block:

The top level test program construct. There can be one or more. One may be global
(unnamed). There may be one or more named TestProgram blocks in a STIL file.

2.2 Flow Block (or TestFlow):

This is the top level program flow construct. There can be one unnamed Flow block. There
can be one or more named Flow blocks. This block contains definition of flow and bin
entities that make up a given test program flow.

2.3 EntryPoint:

This is a reference to a special program level task activated by the tester (tester operating
system, system interrupts, etc.) This entry point references a TestModule. There is a gen-
eral set of EntryPoint entities defined by this extension (i.e. OnStart, OnReset, etc.). These
can be named and one instance of each can be unnamed and treated as global to any Flow

EntryPointDefs

TestMethodDefs

TestModuleDefs

STIL
1450.0

constructs

TestProgram “Char”

TestProgram “WS”

TestProgram “FinalTest”

TestProgram “LabATE”

Standard Libraries via Includes
(similar to MacroDefs)

TestProgram blocks
contain references to
EntryPoints and TestModules

1450.2
constructs

1450.n
constructs *

* P1450.1 and .6 as
they become adopted
to the STIL standard

EntryPointDefs

TestMethodDefs

TestModuleDefs

STIL
1450.0

constructs
1450.0

constructs

TestProgram “Char”TestProgram “Char”

TestProgram “WS”TestProgram “WS”

TestProgram “FinalTest”TestProgram “FinalTest”

TestProgram “LabATE”TestProgram “LabATE”

Standard Libraries via Includes
(similar to MacroDefs)

TestProgram blocks
contain references to
EntryPoints and TestModules

1450.2
constructs

1450.2
constructs

1450.n
constructs *

1450.n
constructs *

* P1450.1 and .6 as
they become adopted
to the STIL standard

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 2 of 12

block that does not declare a named one of each type. When a flow is active and a tester
event requires an EntryPoint response, the associated EntryPoint TestModule/FlowMod-
ule that was declared, or the default if not declared is run.

2.4 TestMethod:

This represents a test type which when instantiated, becomes a TestModule. There are
two kinds of types: integral and user defined. A user-defined TestMethod may be com-
posed from a combination of integral and other user defined types. The means by which
integral and user defined types are combined to form a new type is TestMethod Flow, the
only concrete primitive TestMethod defined by P1450.4 (TestMethod Harness, the other,
is abstract).

Integral types are sub-divided into primitives and purely derived types. All types are
derived from “Harness”, a base class which represents the common denominator (data and
functions) between all TestMethods. An example of a primitive might be ForceMeas or
VOH.

User-defined types are divided into combinatorial and purely derived types. An example
of a combinatorial might be a vol/voh test performed both functionally and parametrically.
An example of a purely derived type might be TopLevelFlow.

2.4.1 “TestMethod Harness” (abstract base class)
This represents the common denominator of all TestMethods, i.e., each TestMethod defini-
tion includes a single “Harness” component, explicitly or implicitly, but a TestMethod of
purely type “Harness” can not be instantiated. Here are some proposed elements:

• Test id (a named data member and not a value)

• 0+ parameters/arguments: input, output, ioput, private (local)

• Ports: entry, exit (pass/fail), and associated actions:
- variable assignment (conditional/unconditional)
- bin (conditional/unconditional)
- stop (conditional/unconditional)
- skipTestAndActions (conditional/unconditional, entry action only)
- actionlist (conditional/unconditional)

• Fail flag

• Result: scalar, array (Don Organ: should be typed)

• Default fail bin (data container or an actual data item)

This is an informative term that is not intended to have a keyword in the extension lan-
guage. It is a common denominator descriptor for all TestModule instantiations. Its use
refers to a data type (or object type) from which the various types of TestModules (shown
in figures 3 and 5) are derived.

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 3 of 12

2.4.2 Defaults

The ability to describe per type defaults is to lend brevity and clarity where intent might
otherwise be obscured by specification of redundant detail. The types for which defaults
are provided are FlowNode, Harness, and individual TestMethods, integral and user-
defined. User-defined defaults for these types, if present, override STIL defaults. A Test-
Method definition may override its own base Harness defaults. A TestMethod instantiation
may override TestMethod definition defaults.

P1450.4 defaults are designed to provide a best common denominator from which produc-
tion testflows for current ATE can be generated:

• FlowNode defaults:

- Exit ports: pass and fail.
- Actions: none on entry, post, pass, and fail.

- Arbiter: exit via fail port if test object fails, exit via pass port otherwise.

• Harness defaults:

- Actions: none on entry, post, and pass, and bin with stop on fail.

- Arbiter: exit via fail actions if fail flag is set, exit via pass actions otherwise.

- Test id: empty string

- Parameters/arguments: none

- Ports:

 Entry actions: none

 Exit actions:

 Pass: none

 Fail: bin with stop if any test failed

- Fail flag: false

- Result: scalar = NaN (zero dimension array)

- Default fail bin: undefined (equivalent to no bin)

• Flow defaults:

- Actions: inherit Harness defaults.

- Arbiter: exit via fail actions if any directly referred or contained test objects’ fail flag
is set, exit via pass actions otherwise.

• TestMethod defaults:

- Integral: all except TestMethod Flow defined by P1450.5.
- User-defined: defined by user.

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 4 of 12

FIGURE 2. TestMethod Parameter Default Assignment:

With regard to TestMethod parameter assignments, any parameter not assigned a default
value during TestMethod definition must be assigned a value during Defaults specifica-
tion. Defaults apply only to parameters left unset during TestMethod definition. User
defaults override p1450.4/5 defaults.

FIGURE 3. Harness Abstract Base Class Example

User Defaults

P1450.4/5 Defaults

User Definitions

P1450.4/5 Definitions

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 5 of 12

FIGURE 4. Example View of an Instantiation of the Abstract Harness- Test Method Flow

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 6 of 12

FIGURE 5. Defaults

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 7 of 12

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 8 of 12

2.5 TestModule:

This is an instantiation of a TestMethod.

(See Figures 3, 4 and 5)

2.6 FlowNode:

(See Figure2) A node in the program flow that contains a ModuleRef (Body) that refer-
ences a TestModule or FlowModule. This node has PreActions that defines the entry point
into the node and may contain actions, declarations such as Spec/Category selection, etc.
Absence of actions may in the Pre section may cause default actions (tbd). The Post sec-
tion contains PostActions, Arbitrator, and ExitActions. The ExitActions give directives as
to the follow-on flow path taken out of the FlowNode.

2.7 BinNode and BinMap:

Not yet defined/discussed

(Need two natures: terminal and flow-through)

2.8 TaskNode and DecisionNode:

These are non-test type nodes used for non-test activities and flow decision content.

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 9 of 12

3.0 FlowNode Conceptual Model

FIGURE 6. The FlowNode Conceptual Model Diagram (with its named components)

3.1 FlowNode Components Descriptions

1. FlowNode

2. EntryPath

3. PreActions Block

4. ModuleRef (Module Reference)

5. PostActions Block

6. Arbiter Block

7. ExitActions Block

8. ExitPath

9. SkipPath (can goto to any ExitAction Block)

FlowNode

8

8

9
1

P
os

tA
ct

io
ns

A
rb

ite
r

5
6

Exit Actions(1)
7

Exit Actions(n)

7

ModuleRef
2

P
re

A
ct

io
ns

3

Pre- Body Post-

8

4 8Exit Actions(2) 8

7

..

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 10 of 12

3.2 FlowNode Informative Term Descriptions

1. “Pre-” portion

2. “Body” portion

3. “Post-” portion

4.0 Relationship of FlowNodes to TestModules

The instantiation of the TestMethod (i.e. VOH) can be “in-line” or “defined-before-use”.
“Define-before-use” is the mechanism by which two or more FlowNodes can refer to the
same “Test Object” (i.e. Module). Test Module instantiation involves placing the instanti-
ated TestMethod inside the harness as shown to the left (the harness is the grey portion of
the box labeled TestModule.)

TestMethod “VOH” {Arg1, Arg2,...ArgN} is the type definition, and

Test VOH {Arg1, Arg2,...ArgN}is the instantiation of the VOH TestMethod in the test
module.

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 11 of 12

FIGURE 7. Block Diagram View of FlowNode Where ModuleRef References a TestModule

5.0 TestModule Characteristics

5.1 The “Harness” of the TestModule (a better title will emerge)

Commonalities. What the harness provideds. The FlowNode has dependencies on the the
harness. Describing the data interaction model. Perhaps an upper level view of the inter-
face between the FlowNode and the TestModule. Examples. Cummunication with input
and output arguments flowing into and out of the TestModules.

FlowNode

P
os

tA
ct

io
ns

ModuleRef

P
re

A
ct

io
ns

Exit
Actions(1)

Exit
Actions(n)

A
rb

ite
r

Te
st

P
os

tA
ct

io
ns

Te
st

A
rb

ite
r

Te
st

P
re

A
ct

io
ns

PassActions

FailActions

“Harness”

Test VOH {Arg1, Arg2,...ArgN}

TestModule

P1450.4 Test Program Flow Conceptual Model Discussion Document

TestProgramFlowConceptualModelF.fm May 19, 2004 Page 12 of 12

5.2 Two Types of “Outflow” Configurations for TestModules

FIGURE 8. Conceptual Block Diagrams of the Two Outflow Types

5.3 TestFlow as the TestModule Body

FIGURE 9. TestModule Referencing a TestFlow

TM2TM1

4A: Two Exits Join
 to One Point

4B: Classic Two Exits:

 for Later ArbiterArbiter
 Action

 One Pass, One to
 Failure Terminal
 Point

P
os

tA
ct

io
ns

A
rb

ite
r

P
re

A
ct

io
ns PassActions

FailActions

“Harness”

TestModule

FN1 FN2

..

..

FNn

T
M

n

T
M

A

T
M

B

Test Flow...

