
1450.4 meeting minutes – 01/21/10

Attendees: Bruce Parnas, Ernie Wahl, Markus Seuring, Jim O’Reilly, Oleg Erlich, Ajay Khoche

Not present:

Agenda:

• IEEE Meeting Preamble (No discussion of proprietary information).

• Discussion items

o Discussion of inheritance and parameter overriding. Several proposals have been made

(see recent email exchanges); let's select one.

� Option 1: Using keyword “Override” in place of type name in parameter
declaration statement – in both the single form or the block form:

Parameters {
 Override failBin = Contact;
 Integer newparam = 1;
}

or the block form

Parameters {
 Override {
 failBin = Contact;
 }
 Integer {
 newparam = 1;
 }
}

� Option 2: Specifying override values for parameters from base classes in the

Inherit statement

Inherit TestBase { FailBin = ContactBin; }

� Reviewed structure of inheritance, and the rules for inheritance regarding:

� Parameters: Derived class included ALL base class parameters plus

any defined in the derived class.
� Action blocks (Pre, Post, Pass, Fail, or ExitPort actions): Each action

block (Pre, Post, etc.) defined in the derived class COMPLETELY

replaces the same action block in the base class.

� Discussion back and forth regarding the pros and cons of each approach. One

benefit to the Override keyword instead of the Inherit statement form would be

that it allows other things (attributes, perhaps) to be altered in the derived type

itself.

� After a discussion of the two options, a vote was taken, and we decided 3-2 in

favor of the Inherit statement form.

o The next items were not addressed at this meeting
o Spec block, Category, Spec variable namespace resolution in Tests/Flows.

� Allow Spec/Variable/Category hierarchy as well as Spec/Category/Variable

hierarchy?

� Per input from Mentor Graphics and Test Insight (more vendors being

polled), Spec/Category/Variable hierarchy should be enough. Disallow

Spec/Variable/Category hierarchy.

� Proposal: Namespace resolution precedence rules.

� Local variables or Test/Flow Parameters of type SpecVariable

� Spec variables in any named in context (i.e. Spec block, as well as

Category and Selector, if needed, are provided as parameter(s) to Test

or Flow).

� Global variables of type SpecVariable.
� Need to add data type Spec (for an entire Spec block) to stil_data_type. (Done,

not yet published on web)

� Develop, if possible, rules for allowing dot0 compatibility (i.e., what happens if

the Test or Flow doesn't specify a spec block name, and all spec/category blocks

are developed according to dot0 rules? Do we want to allow resolution based

solely on Category/Selector specification - assuming that, as per dot0, all

category+variable names are unique. I need to think this one through, but

thought I'd put it on the table. As I was thinking through the rules above, it
occurred to me that we *might* be able to make this one work also.

o Discussion of retest proposal (included at the end of the current syntax document).

• Open issues - are there other open issues that should be considered? A review of the open issues

list can guide us here.

o http://spreadsheets.google.com/ccc?key=0AoKiPr1I9LY9dF95dkhSTVVqOU5GbWJyW

FNhY0JPX0E&hl=en

o If logged into your google account, can edit. If not, can only view.

• Next Meeting 01/28/10.

For reference STIL .4 information can be found at the IEEE STIL website:

http://grouper.ieee.org/groups/1450/ (select the P1450.4 link from the table) or use the direct link

http://grouper.ieee.org/groups/1450/dot4/index.html

