
1450.4 meeting minutes – 03/11/10

Attendees: Bruce Parnas, Jim O’Reilly, Ernie Wahl, Oleg Erlich

Not present: Ajay Khoche, Markus Seuring

Agenda:

• IEEE Meeting Preamble (No discussion of proprietary information).

• Minutes from last week are not yet on the web.

• Questions (reviewing agreement from last week):

o Do we want to define in STIL.4 code the behavior of tests, or only specify the interface to

those tests?
� P1450.4 will specify the interface to tests, and expected behavior (in

unambiguous detail!), but will not include detailed code or syntax constructs
which would be needed to implement such tests.

o Do we want to allow for initialization arithmetic involving parameters and /or variables

(when a Test or Flow is instantiated)?
� Yes.

o When instantiating a Test or Flow, do we want to allow a later parameter to refer to (or

use) the value of a previous one to set the value during instantiation, and what value it

sees if it can or can’t.
� No. See rules below:

� When instantiating a TestType or FlowType, values for Parameters
(default and instantiation-provided) will be initialized before any local
Variables. This includes any Parameters defined in TestBase.

� When instantiating a TestType or FlowType, Type default values will be
assigned before any values provided at instantiation. There is no
requirement regarding the order in which Parameters be initialized.
Variables will be initialized in the order in which they’re specified in the
Variables block of the TestType or FlowType definition.

� When instantiating a TestType or FlowType, values for Parameters
(default and instantiation-provided) will be initialized before any local
Variables. This includes any Parameters defined in TestBase.

� Within a Parameters block, there can be no referencing of other items
from within that block. A Variables block, however, can refer to items in
the Parameters block – and further, a later-defined Variable can be
initialized from a previously-defined one.

o At instantiation of Test or Flow (from TestType or FlowType) what is the order of

initialization of parameters? Per C++ rules, initialized in order defined in type (class)

definition. Do we want to use that rule?
� No. See above.

o Should .Min, .Typ, and .Max fields of a spec variable be modifiable from within STIL.4

code (as we're allowing for .Meas)?
� No. Not in dot4. It may be revisited at dot4 phase2 or dot5

o Can you define spec block selector items (i.e., .Min, .Typ, .Max) in terms of other

selector fields items?
� For now, consensus on leaving Min, Typ, Max as constant; .Meas is non-

constant and can have a value assigned OUTSIDE spec block definition.

• New issues from this week (from Ernie’s email of 3/10/2010)

1) Global Variables:
a) We need to be clear about the difference global variables usage in PatternExec

and TestProgram. Dot1 quote: "Global variables are set to the InitialValue at the
start of a PatternExec and maintain the last-assigned value throughout the
execution of the PatternExec."
i) The question is, how do we reconcile dot1 global variables (specified by an unnamed

Variables block (i.e. a Variables block with no domain name) with TestProgram global
variables.

ii) The solution we’ve leaning towards (but haven’t some to complete agreement, as
potential side effects remain to be explored) is to have any dot1 global variables (from
an unnamed Variables block) continue to behave exactly as they do in dot1 – they’ll
be reset to their initial values (if specified) at the start of each PatternExec (or any
other block that will behave as a PatternExec would – such a functional test, which
may take a PatternExec block as a single Parameter, or the components of a
PatternExec block as a series of Parameters). Those variables could be readable
outside the context of a PatternExec or equivalent block, and could be also writable
(perhaps to no effect, since if an initial value is specified, such a variable will be
reinitialized at the start of each PatternExec). The exact mechanism for accessing
such variables needs to be worked out, and we’ll continue to discuss this next week.

iii) Global variables are defined inside the TestProgram block by using either of the
forms shown below

Variables { var_elements_stmt* } | Variables VAR_DOMAIN)*

INSIDE the TestProgram block. If the first form, there’s no conflict with dot1 global
variables (declared OUTSIDE the TestProgram block); if the second, we have an
instantiation of a domain-named Variables block, so again there’s no conflict with dot1
global variables (again an unnamed Variables block declared OUTSIDE the
TestProgram block).

b) Global variables ought to be able to refer to each other (define before use rules
apply) to offer test engineers capability that's available on most testers today
(correct me if I'm wrong).

Agreed – we’ll allow this, both for global (TestProgram) variables, as well as local
variables defined within TestTypes or FlowTypes. Parameters, on the other hand,
CANNOT refer to one another.

c) I prefer not to use global Variables blocks in TestType|FlowType definitions (see
2a below)

Agreed – see resolution for 2a below.

2) TestType|FlowType Variables:
a) I believe the form "Variables VAR_DOMAIN " on lines 640, 661, and 686

unnecessarily complicates variable semantics, does not reflect how most testers
treat variables, and provides little benefit - allow one block only

Resolved. We’ll allow both forms, but allow one block per type definition only. If you
want additional variables, simply add them to the single block.

Changed lines 640, 661, and 686 from

Variables { var_elements_stmt* } | Variables VAR_DOMAIN)*
to

Variables { var_elements_stmt* } | Variables VAR_DOMAIN)

The Variables statement in the TestProgram block (line 700 of D32) will still allow
more than one Variables statement.

b) I believe allowing more than one Variables block is unnecessary.
Agreed – see resolution for 2a and 1c above.

c) I think that TestTypes|FlowTypes may map to functions on many testers where
Variables will map to local function variables. I think it's unreasonable to
constrain these to "no cross-references".

Agreed – will allow, but only for Variables (not Parameters). See 1b above.

d) In my opinion, if global and local Variables blocks have different semantics, they
should have different type names

Resolved – global in this context was referring to dot1 global variables. Once we get
the above issues resolved, this issue will also be considered resolved.

• Open issues - are there other open issues that should be considered? A review of the open issues

list can guide us here.

o Issues list:

http://spreadsheets.google.com/ccc?key=0AoKiPr1I9LY9dF95dkhSTVVqOU5GbWJyW

FNhY0JPX0E&hl=en
o Namespace resolution examples document:

http://docs.google.com/Doc?docid=0AYKiPr1I9LY9ZGY4dmNjNTNfMGZkOGJ2bmZ

y&hl=en
o If logged into your google account, can edit. If not, can only view.

• Next Meeting 03/18/10.

For reference STIL .4 information can be found at the IEEE STIL website:

http://grouper.ieee.org/groups/1450/ (select the P1450.4 link from the table) or use the direct link

http://grouper.ieee.org/groups/1450/dot4/index.html

