
1450.4 meeting minutes – 05/20/10

Attendees: Jim O’Reilly, Bruce Parnas, Ernie Wahl, Oleg Erlich, Ajay Khoche, Markus Seuring

Not present:

Agenda:

• IEEE Meeting Preamble (No discussion of proprietary information).

• Minutes from last week are now on the web.

• Discussion items

o Discussion of the issues resolutions proposed by Ernie and Bruce, as summarized in

Ernie's email of May 13, 2010 (Subject: Variables/Parameters Const/In?InOut?out). I'd

like to close on and ratify as much of that set of proposals as possible.

� Syntax element "Const" applied or not: what does it mean for various types, e.g.,

does it mean the same thing for Category or DCLevels as it does for Voltage ?

Enumerate datatypes that are const by definition.

Precept:

Concept "constant" applies when a Test/Flow (including None, alias

StdNoOp) triggered by an "On ..." event takes control until it relinquishes it.

Test/Flow control is relinquished before or after Test/Flow execution or

possibly during via a debugger breakpoint.

(Stated another way, if a Test or Flow is NOT executing, it is permissible
for tools which operate on STIL TestFlow data to modify “const” data – it’s

just not possible for STIL TestFlow code itself to modify such data).

Precept:

When an object is described as constant or mutable, it applies to that object

only, i.e., it does not apply to contained objects, e.g., just because Category

is constant doesn't mean that variables therein are.

Recommendation:

stil_data_type and BinSpec can't be used in Variables block, but only for

Test/Flow Parameters. AGREED.

Recommendation:

Drop keyword Const from Parameter qualifier list: AGREED.

Precept:

Test Start/Stop control is local to test, hence PatternBurst/Pattern are

intrinsically const

Recommendation:

PatternBurst/Pattern MUST be constant. AGREED

o Additional notes (compiled by Ernie and Bruce) regarding which elements are constant,

and which can be modified are shown below. Note that the data type BinSpec is

discussed; as of this writing, the use of BinSpec as a data type and container for all levels

of the bin hierarchy - BinDef (SoftBinDefs/HardBinDefs), BinGroup (Pass/Fail),

BinAxis, and Bin - is not settled. We may continue to use BinSpec, or we may use a

separate data type for each level in the hierarchy.

 BinDef - Always constant
 BinGroup - Always constant
 BinAxis - Always constant
 Bin - Always mutable with respect to enable, disable, set, clear, and related counters
 Color - Always constant
 Number - Always constant
 Terse - Always constant
 Verbose - Always constant
 WafermapChar - Always constant
PatternExec - Always constant
 Timing - Mathematical expressions are constant, timing values resulting from evaluation are not constant
 Selector - Always constant
 (Spec) - Constant in part, see individual parts
 Category - Constant in part, see individual parts
 SpecVariable - Only Meas field is mutable, Min/Typ/Max fields are always constant
 PatternBurst -
 (PatList) - Pattern order in PatList is mutable,
 For adaptive testing: need per PatternBurst/Pattern fail counter, stand-alone flag
 Pattern - Always constant
 MacroDefs - Always constant. Remove from stil_data_type
 Procedures - Always constant. Remove from stil_data_type
 ScanStructures - Always constant. Remove from stil_data_type
 Start - Always constant - Request PatLocation (address/cycle/label) and PatWindow (Start/Stop/SigGroup) variable types
 Stop - Always constant - Request PatLocation (address/cycle/label) and PatWindow (Start/Stop/SigGroup) variable types
 Termination - Always constant
 DCLevels - Mathematical expressions are constant, timing values resulting from evaluation are not constant
 DCSets - Always constant
DCSequence - Always constant. Remove from stil_data_type
Environment - Always constant - Want as TestProgram attribute (Sig-to-chan map). Remove from stil_data_type
SigGroup - Always constant
SignalGroups - Always constant - Want as TestProgram attribute. Remove from stil_data_type
Signals - Always constant. Remove from stil_data_type

� From this discussion, the following data types are removed from stil_data_type:

� MacroDefs, Procedures, ScanStructures, DCSequence, Environment,

SignalGroups, Signals (AGREED)

� All other recommendations regarding mutable/constant as described above are

accepted.

� Items needing additional discussion:

� Request for PatLocation (address/cycle/label) and PatWindow

(Start/Stop/SigGroup) variable types. Could be useful for adaptive

testing.

� Request for fail counter and enable flag per PatternBurst/Pattern (could

be useful for adaptive testing).
� Request for TestProgram block to contain reference to (optional?)

Environment block, referenc to (optional?) SignalGroups block.

• Open issues - are there other open issues that should be considered? A review of the open issues

list can guide us here.

o Issues list:

http://spreadsheets.google.com/ccc?key=0AoKiPr1I9LY9dF95dkhSTVVqOU5GbWJyW

FNhY0JPX0E&hl=en
o Namespace resolution examples document:

http://docs.google.com/Doc?docid=0AYKiPr1I9LY9ZGY4dmNjNTNfMGZkOGJ2bmZ

y&hl=en
o If logged into your google account, can edit. If not, can only view.

• Next Meeting 06/03/10.

For reference STIL .4 information can be found at the IEEE STIL website:

http://grouper.ieee.org/groups/1450/ (select the P1450.4 link from the table) or use the direct link

http://grouper.ieee.org/groups/1450/dot4/index.html

