1450.4 meeting minutes — 06/15/11

Attendees: Paul Reuter, Jim O’Reilly
Not present: Ernie Wahl, Oleg Erlich, Ajay Khoche, Markus Seuring

Agenda:
¢ JEEE Meeting Preamble (No discussion of proprietary information).
e Discuss semantics of FunctionDefs/FuncExec constructs.

Summary:
e No quorum (only Jim and Paul) — however, we discussed and recommend that:

o All rules and semantics that we’ve agreed to for Parameters of TestTypes/FlowTypes (i.e., those regarding
the use of and meaning of Const, for example, or whether or not a parameter is passed by value or by

reference) should also apply to Parameters of FunctionDefs.

In reviewing this issue, we used as reference the document “FunctionDefs/FuncExec Comparisons” from

the “Docs for WG meetings” section of the STIL.4 website, and section 3.9 of the ITC2010 STIL.4 paper

(shown below)

3.9 FunctionDefs

In modern object-oriented ATE software, the definition of tests (also sometimes referred to as test
methods) can be broadly classified in two ways — those in which the block labeled “Test” specifies what type
of test is to be run (for instance, a functional test or a DC test), and those which have a more generic
container labeled “Test”, from which a specific Test Method (functional or DC test) is executed. P1450.4
supports both models; the FunctionDefs block is the structure used to support the latter. A typical test
program fragment from Verigy SmarTest (which uses the “FunctionDefs” model) is shown in Figure 6; the

equivalent STIL code is shown in Figure 7.

1E5ES estMethod definition
T

testmethod class - "01as5660- 10d42-11b3- 2403 ca84Hbizoda";
testmethod id= 1;

testmethod parameters - "05:gross_func®;
testmethod _limits = == 1 testmethod_id 1 has prototype Tast Functiana funciional
and C-Functional_Test{ INT. INT, STRING)": s rn c”E-H-'-:'-s-s:.__'l__'f'_f__E__

Ei0p = 5;
iest suiles ‘.-'""| Test Suile with embedded TestMeathod | label - "gross_func™;
Onchonan:

ovemide - 1; override_fim_equ_set = 1; overide_lev_equ_set = 2;
owermide_tim_spec set=- 1; ovemide lev_spec set=-2;

ovemide timset = 1; override_levsat = 1; override_saqlbl = “gross_func®;

TestType Functional {
Parameders |
n Integer siar;
n Integer sioo;
in String label;

FuncExec Functionz | Test |

7 Set function parameders from

| Testethod is embedded in TestSuite. FunetionDefs | (,_.—-""/ Si2n_sddr- start;
and Can change TastMethod without Functicnal Test{ siop_addr - siop;
changing outer lavel test constructs. Paramatars | saq |abal = labal;
test_flow n Integer siar_addr;
run_and_brench{fungtional1) then | Test suite “functionali- (dek n Integer siop_addr 17 Set TestType “failed” paramater
= f o5t suite “functionzl 1~ (dafined PO e T 17 ha I - -
|) above) is exacuted from flow node. n String seq_laball; [I'based on refun_vahies
alse | Ot Infeger return_value; failed = retumn_valus;
stop_bin "207, =, , bad.noreprobe,red, , over_on;]
! b]
stop_bin =17, =, , pood noreprobe,green, , over_on; b b
end
Figure 6. Verigy SmarTest example showing TestSuite Figure 7. STIL equivalent code (using FunctionDefs)
and embedded TestMethod for SmarTest example in Fig. 6.

In contrast, Figures 8 and 9 below show a typical code fragment from Advantest OTPL; in which the
TestMethod being executed is intrinsic to the TestType, and doesn’t rely on another level of function

call (i.e., the FuncExec as defined in FunctionDefs) to execute the test.

! Tastwith test method speciied insrinsically by 1est type.
Cannot change Testhethod without changing test type.

—{Test Type| r{Tlahst Instanca |
W \

L J

- TesiType dooes not wse FuncExec as defined in
Test FunctionalTest Functionallesthin | — : - —_—
Rl DZZF.E_LAQL;'D selns E"“E':m':';.?f T‘?j.[FunctionDefs, but intrinsically specifies TestMathod.
TestCondiionParam = TC Min: frgp:;'l‘;:_ m?:IG-aE in Cannot change TestMethod without changing test typa
: v
DUTFlow Flowhain | ,i// TesiTypa Functional_Test {
DUTFlowhem Flowdain_Min FunciionalTestMin { Parameters |
Result 0 { W Pass In PatternBurst PlistParam;
SeiBin SoftBins PassAlGHz; In Spec TastConditionParam;
Reaturn 0; }
I
Rasul 1 | I Fail —rrestT','pel est Instanca
SetBin SoftBins_FailCacheaGHz; W W
Raturn 1; Test FunctionalTest FunctionalTesthin |
! PListParam = DiagPBPat;
} TestConditionParam = TGAMin;
! !

Figure 8 Advantest OTPL example showing TestType
with intrinsic Method Figure 9. STIL equivalent code for Advantest OTPL
example in Fig. 8

Note that in both cases, it’s assumed that either the TestType with intrinsic TestMethod or the
function defined in FunctionDefs will exist in a library outside the scope of the P1450.4 program,
but which can be linked to the program in order to execute the desired TestMethods. Of course, if
one is using P1450.4 to translate to an existing tester language, one would simply need to translate
either form to the appropriate form for the desired target tester language. We provide both
mechanisms for users who wish to target their P1450.4 usage to one or the other of the two
models described.

In reviewing the examples, Paul pointed out that the examples were inconsistent — that is, the STIL
translation of the Verigy example was incomplete, as it did not include any information about which timing
blocks or spec blocks were to be used — which the original Verigy example DOES specify.

While Paul agrees with the idea that it’s useful to support an additional level below the level of
Test/TestType to specify the actual test code (using a FuncExec statement in the TestType definition,
where that function is elsewhere defined in a FunctionDefs block), it seems logical to expect that the
TestType parameters for the case in which a FuncExec call is used should include the same parameters as
for the case in which a FuncExec call is not used. Additional parameters needed by the FuncExec call must
be derived from those passed into the TestType, or the TestType may include optional parameters with
default values which are only used if the FuncExec call model is used.

Further, all parameters which specify things like Spec blocks or Timing blocks should be in terms of the
STIL blocks, rather than strings, and mechanisms must be in place within STIL.4 to convert a STIL block
name into a string — which is already in place, with the .Name operator, which can be applied to most (if
not all) STIL block types.

Actions:
e Jim to rework Verigy example from STIL paper so that the STIL translation is consistent with its original Verigy
code.

Reference documents (If logged into your google account, can edit. If not, can only view.)

e http://spreadsheets.google.com/ccc ?key=0AoKiPr119L Y9dF95dkhSTVVqOU5GbWIJyWENhY0JPX0E&hl=en

e Namespace resolution examples document:
http://docs.google.com/Doc?docid=0AYKIiPr119LY9ZGY4dmNjNTNfMGZkOGJ2bmZy&hl=en

e Scratchpad spreadsheet: https://spreadsheets0.google.com/ccc?key=tQ93VDnAZ-
CI9RFKpPrPDzw&authkey=COzyro8 K&hl=en&authkey=COzyro8K#gid=0

e Scratchpad "Word" doc: https://docs1.google.com/document/d/1zVu2M8nTJsrmOnFbBhiuM8-
YRt4ErYqdy uSa3x3_T4/edit?authkey=CLrgwrsG#

Next meeting: 06/22/11

For reference STIL .4 information can be found at the IEEE STIL website: http://grouper.ieee.org/groups/1450/ (select the
P1450.4 link from the table) or use the direct link http://grouper.ieee.org/groups/1450/dot4/index.html

