
1450.4 meeting minutes – 12/17/09

Attendees: Jim O’Reilly, Markus Seuring, Bruce Parnas, Ernie Wahl, Ajay Khoche

Not present:

Agenda:

• NOTE: Summary includes discussion at the meeting, as well as a number of followup emails

which were sent through the P1450.4 email reflector).

• IEEE Meeting Preamble (No discussion of proprietary information).

• Discussion items

o Discussion of keywords and units to be used for real_var_type (lines 24-37 of D29 syntax

document).
� Use keywords based on Units (Watts, instead of Power, for instance), using

multiple keywords (DegC/DegF, Meters/Inches) for similar types that can have

different units.

o Conversion between Boolean and Double/Integer, Double/Integer and Boolean.

� Double excluded. No direct conversions between Boolean and Double (can still

convert Double->Integer->Boolean or Boolean->Integer->Double in multiple

assignment steps, if desired – with all the caveats regarding Double->Integer

conversion)
� Boolean to Integer: False = 0, True =1

� Integer to Boolean: 0 = False, non-zero = True

� No mathematical operations allowed on booleans; logical operations are

allowed:

� =, !=, <, >, <=, >=, !, &&, ||

o What operations are allowed on integers?

� +, -, /, *, %, ==, >, <, >=, <=, != (modulus can be applied only to integer, all

others can be applied to Double as well).
o Allow enums? Yes or no?

� Yes, per C/C++ rules – with one exception. Cannot assign starting value of

enum – they ALWAYS will start with 0!!!

� Disallow direct conversions between enums and Boolean, enums and

Double. As above for Boolean, can convert from enum->Integer-

>Double or Double->Integer->enum in multiple assignment steps (with

all the caveats regarding Double->Integer conversion)

� Conversions from enums to Integer allowed, conversions from Integer
to enum allowed within range enum values (if converting from a

integer to enum outside the range specified by enum, error results).

� Enum value will be either string name (enum literal name) or numerical

value, depending on context. If assigned to an integer, get a numerical

value. If assigned to a string value (or used in as string context, such as

a print statement), get a string value.

o How will uninitialized selector fields of Spec variables be handled?

� In Dot0, accessing an uninitialized field other than Meas is a compile time error;
in Dot4 access is permitted. Any operation involving NaN results in NaN and

may result in a runtime error.

� Any Min/Typ/Max selector field not explicitly declared in the Spec block -

using either the assignment form (for Typ only), or the block form (for any

combination of Min/Typ/Max) will have the value of None. The .Meas

field,will also have a value of None, UNLESS it’s explicitly assigned a

numerical value in the spec block definition, or until its assigned a numerical

value elsewhere (i.e., within a Test or Flow). Only the .Meas field is read-write
(i.e., can be assigned a value outside the declaration). All other fields are read-

only, and can be given a value ONLY at declaration time. If any field has the

value None and is used in a time_expr or dc_expr, it is an error. Note that None

is already going to be used in another context (as an initial value for a Test

(TestType) or Flow (FlowType) parameter, as defined in the type definition. If a

parameter is initialized to None and is not overridden to a value other than

None during instantiation, it is ignored during execution.

� Anything uninitialized (spec/category stuff) will have None.
o Explicit vs. implicit initialization of variables at declaration time.

� Variables can be initialized at declaration. They can be initialized to a valid

value, or to None. If not initialized at declaration time, variables are implicitly

initialized to None. The meaning of None depends on variable type (see below).

o Do we want to support a NotInitialized member function for variable types

� Using NaN to indicate NotInitialized does not work for all variable types

� Instead, we’ll use None to indicate “not initialized” for all variable types. The

actual value used for None in implementations is not specified, but the following
are recommended:

Integer – None (Could be implemented as None = MAXINT)

Boolean – None (Could be implemented as ternary (True/False/None))

stil_data_type – None

real_var_type – None (Could be implemented as None = NaN)

String – None (Could be implemented with sentinel string)

� Enum – None (Could be implemented with extra enum member)

o Is it allowed to define a spec variable without units?
� At least two languages support this (EnVision and SmarTest). Therefore, we

should support this.

o Is it allowed to define Meas-only variables?

� No language currently supports Meas-only variables; at least one other selector

field (Min, Typ, or Max) must also be defined. Since a global or local variable

can serve the same purpose as a Meas-only spec variable, Meas-only spec

variables will not be allowed. Units are established for a spec variable by

including them with the numerical value in the spec variable value assignment,
or by using the Units keyword within the block form of the spec variable

declaration (see syntax below).

� The units for all selector fields of a spec variable must be the same.

These units can be established by including them with the numerical

value in the spec variable value assignment, OR by specifying the units

using the Units keyword within the block form of the spec variable

declaration. If there’s any mismatch in the units for various

components of a spec variable (units only, NOT scaling factor – i.e.,
mV and V are identical units), that condition is an error.

� At least one of the Min, Typ, or Max selector fields of a variable

MUST be defined, in addition to the Meas selector field; the units

which apply to the Meas selector field must also be the same as those

for any of the other selector fields.

o Syntax for Spec block definition:
spec_expr = time_expr | dc_expr | real_expr // time_expr and dc_expr will include units; real_expr will not

units_expr = <string>, where <string> can contain any of the following: A, DegC, DegF, F, db, H, Hz, i, m, Ohms, s, V,

W, None, or any combination of the above

Spec (SPEC_BLOCK_NAME) { // this block statement defines variable values for a given category

(Category CAT_NAME {

(VAR_NAME = spec_expr;)* // define only the Typ value

(VAR_NAME { ((Min spec_expr;) (Typ spec_expr;) (Max spec_expr;))+ (Meas spec_expr;) (Units units_expr;) })*

})+

| (Variable VAR_NAME {

(CAT_NAME = spec_expr;)* // define only the Typ value

(CAT_NAME { ((Min spec_expr;) (Typ spec_expr;) (Max spec_expr;))+ (Meas spec_expr;) (Units units_expr;) })*

})+

}

� Rules:

� The combination of spec block name+category name+spec variable

name MUST be unique. This is an extension of the dot0 rule stating

that the combination of category name+spec variable name must be

unique.

� Incremental definition of the various categories in a spec block, or the

various variables in a spec block category, is permitted (as it is in dot0),
but NOT recommended. Even with incremental definition, the

constraint regarding uniqueness of spec block

name+category_name+spec variable name MUST be adhered to.

� At least one of the selector fields Min, Typ, or Max must be defined, in

addition to Meas. Any selector field not mentioned in the spec block

definition will have the value None.

� Units can be assigned by using the time_expr or dc_expr (both of which

include units), or by using real_expr (which does not include units) in
conjunction with the Units keyword.

� Units for all selector field values must be the same. If some selector

fields have units specified (using time_expr or dc_expr), but others do

not (using real_expr), the units specified by the selector fields with

units will apply to the selector fields without units. If no units are

specified for any selector fields, and the keyword Units is not used, the

spec variable is unitless (i.e. <var_name>.Units will return None). If

the keyword Units IS used and specifies None, the spec variable is also
unitless.

o Do we want to support array arithmetic ? e.g., SpecVariable +-scalar or SpecVariable +-

SpecVariable. Might be used for guardbands.

� dot0 spec var automatically refers to Typ if there's no selector and Typ is all that

is defined. Can't do that in dot4 if array arithmetic is permitted.

� No. Spec variable selector fields are not arrays. There's no need to support

array arithmetic for this type of operation - though, since we DO support arrays,

there might be some value to supporting array arithmetic (particularly as we
look ahead to mixed-signal test methods, etc.). However, for flow-related

issues, I don't think it's needed, and we should probably not include any array

arithmetic.

• Open issues - are there other open issues that should be considered? A review of the open issues

list can guide us here.

o http://spreadsheets.google.com/ccc?key=pEI1-

gPUmt2ZTw_kcCTgnKw&inv=jim_oreilly@ieee.org&t=933048453488551871&guest.

o If logged into your google account, can edit. If not, can only view.

• Next Meeting 01/07/10.

For reference STIL .4 information can be found at the IEEE STIL website:

http://grouper.ieee.org/groups/1450/ (select the P1450.4 link from the table) or use the direct link

http://grouper.ieee.org/groups/1450/dot4/index.html

