

P1722.1 Connection Sequencing Proposal
Apr 6, 2010 Face to Face Meeting

Guy Fedorkow, Adamson Systems

Guy {at} Adamsonsystems.com

This chart outlines how a connection manager would discover and enumerate AVB devices in a network,
then set up connections from Talkers to Listeners.

To recap how we get to this chart…

 The starting point is 1722.1-fedorkow-Connection-Sequencing-0210-v1.pdf on the P1722.1
contributions web page.

 We’re beginning with no 1722.1 configuration at all in the devices

 mDNS has assigned addresses, DNS-SD has announced capabilities.

 We now want a management station to identify all the devices and makes connections

Listeners and Talkers Connection Manager

(As the starting point from Section Error! Reference source not found., Listeners do not know the
name of the channel and stream that they want. The management station has access to the AVB
endpoints and figure out what’s out there using a “DNS-SD Browser” methodology, with the ultimate goal
of telling Listeners to connect to Talkers.

All Listeners and Talkers submit DNS-SD Text
Records as identified in Section Error! Reference
source not found.

 Collect a list of the names and descriptions of all
AVB-capable end points that are advertising a
media type the Manager wants to see (e.g. Audio
and/or Video) This allows the Manager to display a
list of AVB devices.

 For each service in each endpoint of interest in the
DNS-SD records, ask which coding types the
endpoint is capable of supporting (e.g. AM824, 48,
96 and 192 khz) [This could be hard to encode,
given all the options. And if it’s not hard, we should
put it in the TXT record!]

[This assumes that the [service in the] endpoint
itself is capable of applying whatever coding it’s
capable of doing to any stream, i.e., coding
capabilities would be an [service and] endpoint

capability, not a stream capability. If this is not
true, we’ll have to report this capability per-stream
somehow. This does not imply that all streams
to/from the endpoint must actually use the same
coding format!]

This coding information might include generic
limitations such as the number of slots that can be
packed into a single stream [depending on how far
we want to go with off-line configuration and self-
describing devices]

Respond with a list of coding capabilities for the
endpoint.

 [insert steps for creating streams on endpoints
here?

If we do this, the steps here would set the coding
params and channel lists on each Talker stream]

 For each Talker of interest, ask the endpoint to list
all the streams it can source, and which ones it is
sourcing. (Do we actually care whether the Talker
is actually talking or not? Other than a debug clue,
it might not matter.)

For each Listener of interest, ask the endpoint to
list what stream sinks it has, and which streams it is
actively listening to (if any). This implies that the
listener responds with two sets of names, the in-
built channels it can receive, and the streams and
channels it’s already been configured for.

This request might be limited in scope by using
names with wild-cards in the request (e.g. “tell me
all streams named “Left*”)

Endpoints respond with a list of names of streams
[and sinks].

Each Name might be a just the name of a stream if
it carries a single channel, or it might be a stream
and channel (eg RightStream/SideFill)

Talkers respond with the list of names for streams
and channels.

Listeners respond with the list of preset names of
listening ports and with names of talkers to which
they’re listening (if any)

 For each Stream of interest, the Connection
Manager can ask the endpoint for the StreamInfo
for a stream with the name learned in the previous
step.

[Alternately, it could ask for the StreamInfo for a list
of streams with wildcards, combining this step and
the previous one]

The Endpoint responds with the info for the

requested stream(s):

Stream Name
Stream ID (unique number used in SRP)
Stream MAC-DA (mcast dst addr)
Stream Coding Info [this is complicated]
Number of Channels
List of Channel Names (and AM824 tag per
channel) (Listeners respond with both talker
and listener names if connected)
Clocking Source (for Talkers only; do we even
want to display this information?)

[I’m assuming that all channels share the same
coding characteristics; we need to figure out
whether that’s not always true – AM824 can code
MIDI, Audio, etc all in one stream]

 Compile a table of channel counts, bit rates,
coding, etc for all devices.

Read a list of desired connections from local
storage / GUI / whatever.

Match up desired connections with devices and
device capabilities to select “the best” combination
of parameters for each connection.

 Issue proprietary commands to set gain, DSP
params, delay compensation, etc using Protocol
XX extensions

Respond to proprietary configuration commands

 Issue Protocol XX commands to configure names
and coding information for desired connections to
talkers and listeners.

For a Listener, set the params for each connection
it should seek to establish:

Stream Sink name

Talker Name
Stream Name
Stream ID (unique number used in SRP for
two-step)
Stream Coding Info
Channel Name (or Names?)

(MAC-DA is not configured, as it should be learned
as in Chart XX above once config is complete)

Respond to connection name configuration
commands.

At this point, each listener can start the connection SRP process on its own.

