

1 Adamson Systems

Contents
1.1 P1722.1 AVB Connection Sequencing Examples .. 1

1.1.1 Use Case ... 1

1.1.2 Configuration and Connection Phases ... 3

1.1.3 Connection Setup Phase .. 3

1.1.4 Configuration Phase Sequencing Steps ... 7

1.1 P1722.1 AVB Connection Sequencing Examples
Guy Fedorkow, Adamson Systems, version 3.0

Jun 18, 2010

1.1.1 Use Case
For the pro-audio, live-sound use case, we have a couple of goals:

 The initial desired functionality is a “distributed, peer-to-peer patch panel,” i.e., there’s a list of
sources of streaming content, and a list of destinations, and the goal of connection sequencing is
to get the right content to the right destinations across named connections.

 It’s important that the system be resilient, and that it recover quickly after failure.

 A system controller (which may be a separate computer, or a functional unit in some other AVB-
enabled device) may be required for initial setup, but should not be required for routine operation
(and restart) of the system.

A System Controller is desirable for setting up complex systems, but that reliance on a System Controller
once configuration is complete is not desirable. To reduce dependency on a System controller, the
approach outlined here uses two interlocking phases:

 Part of the procedure discovers and enumerates all the visible AVB components on a network
segment, then allows a connection manager to identify and configure talkers and listeners, and to
associate them via named connections. A "named connection" might be something like "Right
Side Fill", a human-readable name that would be (for example) assigned to an output channel
from a mixing desk (the talker) and sent to a group of amplifiers that power side fill speakers on
the right side of a stage.

The result of this first phase would not be actual creation of connections, but rather the
configuration of each endpoint with the relevant StreamIDs and parameters of connections it
should make.

2 Adamson Systems

 In the second part of the procedure Listeners subscribe to the StreamIDs that they've been
configured to receive using protocol sequences defined for SRP.

The two phases shouldn't be thought of as distinct and non-overlapping... it's more that the first part
identifies which endpoints should participate in what connections, and transmits that information to the
endpoints in the form of StreamIDs, while the second part carries out the actual nuts and bolts of making
the connection. If the management station changes the connections while a system is operating, the
affected endpoints should drop whatever connections they're no longer supposed to have, and start
making new ones.

3 Adamson Systems

1.1.2 Configuration and Connection Phases
Figure 1 shows that several different configuration techniques could be used, with one uniform method of
setting up connections.

1.1.3 Connection Setup Phase
At this point, assume that devices all have the StreamIDs configured, and are now starting to set up
connections. This stage could be reached either because the connection manager above finished
configuring connection(s) or because a previously-operational system is starting up after a power failure.

AVB allows two forms of connection setup, Two-Step and Three Step.

Basic two-step SRP setup is already completely defined by Stream Reservation Protocol (802.1Qat
D6.1); in this case, the Listener allocates a VLAN and makes a reservation using the StreamID of the
desired stream, as shown in Figure 2 below.

Centralized,
High-Scale
Audio Video
Network
Configuration

(Section Error!
Reference

Ad-Hoc, Low-
scale Audio
Video Network
Configuration

(Section 1.1.4.2)

Default-based
zero-touch
configuration

Connection Setup
Phase

(Section 1.1.3)

Figure 1:
Connection
Phases

4 Adamson Systems

Figure 2: Two-Step Stream Setup

(picture from http://www.ieee802.org/1/files/public/docs2010/at-cgunther-srp-d50-to-d61-0610.pdf)

For Three-step setup, switches use Multicast Pruning, so the Listener won’t see SRP advertisements
from the Talker without registering for the Talker’s mcast MAC address. To obtain that MAC address, the
Listener must ask the Talker for the appropriate MAC address.

In this case, a unicast Protocol X sequence is used on startup for the Listener to ask the Talker for the
required MAC address. Once the Talker MAC has been obtained, the Listener can register with the local
switch to receive multicasts on that address, and it can then use the StreamID to register with the talker.

5 Adamson Systems

Figure 3: Three-Step Setup

1.1.3.1 Optional Stream Checking
In the examples above, Listeners attach to Talkers based on nothing but a cached StreamID, even
though configuration changes may have taken place while the parts of the system were disconnected
from the network. System designers may want to ensure that the Talker and Listener still agree on
coding before enabling a stream.

This can be accomplished in either the two-stage or three-stage cases by inserting another protocol
exchange before completing the SRP setup:

- Talker starts to transmit

- Listener starts to render
(get your earplugs ready)

- Watch for DNS-SD records with
the host names that should have
the desired streams.

- Unicast a request using Protocol X
to the host to obtain the MAC
address of the desired stream

- Update DNS-SD record to advertise
Talker’s name and IP address

[After a power-restart, all end stations obtain an IP address using zeroconf

- Talker responds with mcast MAC
address of the requested stream, using
Protocol X

T
hr

ee
-S

te
p

M
S

R
P

R

es
er

va
tio

n
E

st
ab

lis
hm

en
t

- Listener issues MMRP
Registration

- Talker issues an MSRP Talker
Advertise

- Listener watches for desired
StreamID, then issues MSRP Listener
Ready

-

Pre-Configured Listener Pre-Configured Talker

6 Adamson Systems

1.1.3.2 Device Replacement
We want to configure systems once and have them restart without a management station, and that is
accomplished by programming StreamIDs into Talkers and Listeners to cause connections to be set up
autonomously at startup.

But devices fail, and must be replaced.

In the cases described above, the management station must be used to program the new device, be it a
talker or listener. Listeners need to be told to what StreamID they should listen. And a Talker’s streamID
may be based on its MAC address, so a replacement is guaranteed to have a different number.

As an optional behavior, it would be possible for an endpoint to discover that a speedy connection by
StreamID was not working so well, and try to make the connection by name. This would allow new
devices to be programmed off-line with connection names, without needing to plug a management station
or device into a live network to discover StreamIDs.

- Talker starts to transmit

- Listener starts to render

- Watch for mDNS records with the
host names that should have the
desired streams.

- Update mDNS records to advertise
Talker’s name and IP address

[After a power-restart, all end stations obtain an IP address using zeroconf

O
rd

in
ar

y
T

w
o-

S
te

p
M

S
R

P

R
es

er
va

tio
n

E
st

ab
lis

hm
en

t

- Talker issues an MSRP Talker
Advertise

Listener watches for desired
StreamID.
If coding params line up, it issues
MSRP Listener Ready

-

Pre-Configured Listener Pre-Configured Talker

- Unicast a request using Protocol X
to the host to obtain the coding
parameters of the desired stream

- Talker responds with coding params of
the requested stream, using Protocol X

O
pt

io
na

l C
od

in
g

P
ar

am
et

er
 C

he
ck

7 Adamson Systems

The plan would work as follows:

 Talkers and Listeners would have to be programmed by users with predictable and stable host
names. Zeroconf takes care of collisions, but the intent would be to have devices named in a
way that collisions are unlikely.

 Streams and channels would be named in both the Talker and Listener. Names for streams and
channels should be provided anyway to allow someone at a management station to understand
how connections are being used.

 The Listener would be programmed to connect to the appropriate StreamID (as above), but would
also store the corresponding host name and stream name in non-volatile memory.

Upon startup:

 A Listener would attempt to connect to a talker using the StreamID (as described above).

 If the connection fails, the Listener can send a Protocol X request containing the connection
name to the hostname corresponding to the Talker, to learn the StreamID and channel map for
the named connection

 If that works, the Listener can then update its non-volatile copy of the StreamID and complete the
connection using the standard procedure.

This behavior does not have to be ‘normative’ – it does need access to appropriate Protocol X commands
to learn the right information, but the algorithmic steps are within the scope of something a Listener could
do all on its own.

1.1.4 Configuration Phase Sequencing Steps
Section 1.1.3 above starts with the assumption that endpoints have StreamIDs already configured, and all
that’s needed is to reserve bandwidth in the network in between. This section outlines how those
StreamIDs would be configured.

This section sketches two ways to configure StreamIDs

 One assuming a large centrally-managed system

 The other assuming a small ad-hoc system

The basic flow should be the same for all kinds of devices – high-end pro down to low-cost consumer.

In each case, there will be a network that has various AVB devices attached.

In each case, there will be some device that has a human interface that can be used to initiate the
connections. That human interface might be a management workstation in the case of a large pro
system, or maybe it would be an integrated component in a simple device like a DVD player. But in either
case, a similar set of steps should be executed.

 All devices start by obtaining addresses using Zeroconf procedures.

 All Devices register a host-name using mDNS

 All devices would advertise their AVB capability using DNS-SD

 The management device would go to each device and discover

o The available media sources and sinks

o Supported coding options

o Currently-configured streams and channel maps

 With this information, the management station can display existing allocations of media sources
and sinks to streams, and stream connections between devices.

 The management station can also issue commands to create new media streams.

8 Adamson Systems

The following sections outline the procedure in more detail.

1.1.4.1 Stream Configuration Use Case
The following case assumes that streams are to be configured using a device like a PC or laptop. The
sequence of Protocol X commands does not have to be followed exactly, and different systems might
change the order depending on implementation details or scaling requirements.

Upon power-on, all AVB endpoints start up and carry out the routine steps:

 Endpoints make any pre-programmed connections using StreamIDs stored in non-volatile
memory

 Endpoints use AutoIP or Zeroconf to obtain an IP address

 Endpoints use mDNS to register an endpoint device name. If a device name has not been
configured, use Zeroconf rules to make one up.

 Endpoints use DNS-SD to advertise basic AVB capability, e.g.

o “I can do AVB Audio”

o “I’m an Adamson Powered Speaker, Model YXXX”

(See Section 1.2 for details on the Text Record)

 Endpoints then start a Protocol X server, and await commands from the connection manager.

Subsequent action is triggered by the connection manager (CM), which might use the following steps:

1. The CM would start a Zeroconf Browser to display the devices found on the network. See XX for
an example of what this could look like.

2. To prepare to set up connections, the CM would collect up a complete list of media channel
sources and sinks from all devices, listing each channel by the name assigned in the endpoint.
TX: ["/media/source/*/type"]

returns a type1 field for each media source.

TX: ["/media/source/*/description"]
returns a description2 field for each media source

TX: ["/media/sink/*/type"]

TX: ["/media/sink/*/description"]

3. The CM should also ask each endpoint to identify the coding and bit rate options that it’s capable
of supporting. Due to difficult-to-quantify internal constraints, the endpoint is not likely to be able
to promise to make connections with any conceivable combination of the formats it has available
for use, but this step narrows the list to the choices to the ones that are likely to work.3

1 The ‘type’ field gives the generic purpose of the media source, e.g.., “microphone input”, AES/EBU Left
Channel Input”.
2 The ‘description’ field identifies the specific media source, e.g., “back-panel plug #5”
3 For example, a device might be able to stream all its media channels using 48 kHz sample rates, but
only a subset of the media channels if the rate is set to 192 kHz. Or a device might be able to do PCM
format or AC3 format, but not both at once.

9 Adamson Systems

[we still need to figure this out]

4. The CM should ask each endpoint which streams it already has configured, and learn the channel
maps for those streams

TX: ["/avb/source/byname/*/"]

return all the configured stream names with streamIDs and MAC
addresses

TX: ["/avb/source/*/format"]
find out the format for each of these streams

TX: ["/avb/source/*/map"]
find the list of channel numbers in each stream. Index the
channel numbers into the source/MEDIA_SOURCE_ID list to find
the names [This listing will have to incorporate a coding
format element too given AM-824 per-channel coding options]

TX: ["/avb/sink/byname/*/"] - repeat it all for stream sinks

TX: ["/avb/sink/*/format"]

TX: ["/avb/sink/*/map"]

5. At this point, the CM has a list of every media channel and every stream that’s already
configured. From here, it can use whatever user interface it wants4 to display the configuration,
and to decide what new streams should be configured.

6. The CM can optionally issue proprietary control commands to configure EQ, gain settings, etc.

7. The CM can issue Protocol X commands to configure new streams. The result of these
commands to talkers and listeners would be to program each device with the names, StreamIDs
and channel maps of the desired connections.
Talker streams should be configured first, so that Listeners can connect as soon as they’re told
what streamID to use.

[Example needed]

8. Once Talker and Listener StreamIDs have been configured, connections can be set up using the
procedure in Section 1.1.3 above

1.1.4.2 Small-Scale Stream Configuration
[This section is ‘speculative’]

Section 1.1.4.1 focuses on large-scale applications with lots of endpoints and a substantial configuration
manager, but it would be good to imagine a small-scale use-case as well to make sure the protocols fit.

One possible consumer use-case would be a miniature version of the use-case described above in
Section 1.1.4.1, in which there would be a bunch of devices like speakers, media players, set-top boxes,
etc, all of which run Zeroconf plus Protocol X and all of which can be controlled by an iPod/iPad style

4 E.g., read a list of desired connections from a file, or use a drag-n-drop GUI, or use a text-based
command line, etc.

10 Adamson Systems

device. This is essentially the same as the pro case we've considered, except with ten times fewer
channels, streams and devices, and probably more automation with fewer visible choices in selecting
values for coding, etc. But from the general flow of user interaction, it's the same:

 The controller device discovers all the AVB devices

 It uses "Protocol X" to collect up the media sources and sinks, and reads back existing stream
configurations

 It presents this to the user on an interactive screen, and invites the user to make changes to the
connectivity. Changes then get saved back to the devices in terms of connection setup
commands and put into effect.

But to push all this a bit further, a tougher use-case might be a couple of speakers with essentially no
user interface, and a source of audio or video such as a DVD or CD player. The player might have
nothing but an LCD display with a couple of buttons for navigating a menu. In this case, I'd equip the
speakers with something like a mechanical rotary switch with half a dozen positions marked "A" through
"F". When the speaker starts up, it should register an mDNS name that reads something like "Speaker-
B". If two speakers are set to B, then I think Zeroconf would deal with that by arbitrarily making one
Speaker-B1 and the other Speaker-B2. So be it.

 The player has a tougher job, but it has to do essentially the same job as the controller in the previous
example -- prowl the LAN to find the AVB devices, and ask them via Protocol X what they are and what
they can do. Using a teeny menu, it would have to display the devices and connections it finds and then
offer to configure streams. Although this sounds like a very tough user interface design problem, it seems
like the protocol needs are essentially the same. The only difference I can think of (relevant to the Device
Category list) is that the DVD player might cut the clutter by refusing to display any devices that it couldn't
obviously connect to... e.g., do show anything that claims to be a loudspeaker or video monitor, don't
show other media players, synthesizers, MIDI devices, etc.5,6

This use case would benefit from well-defined default values for stream parameters (e.g. coding formats)7

5 If we think this mode of operation might happen, we should scrub the device list with this use in mind.
6 This doesn’t mean that the DVD player can’t connect to a player/recorder/ripper from SwissArmyAV
Corp, just that you probably need to get out the laptop or iPad to make the connections
7 Would the two choices be Two-channel, 48 kHz PCM, and Dolby 5.1 [what coding is this?]?

