
Controlling and Monitoring Audio Systems with Simple Network

Management Protocol (SNMP)
Kevin P. Gross and Tom Holtzen, Peak Audio, Inc., Boulder, CO, USA

Introduction

Having developed a means in CobraNet for delivering high quality real time-audio over a

standard Ethernet network, we have recently turned our attention to the implementation

of an accompanying control protocol for CobraNet devices. CobraNet is a combination of

hardware, software and protocol for transporting isochronous, asynchronous and clock

data over an Ethernet computer network. Isochronous refers to timing sensitive services

such as live audio, video and real-time control. A CobraNet device consists of a 100Mbit

Ethernet controller and digital signal processor with associated memory and audio I/O. A

CobraNet device may be managed through a parallel data connection by an optional local

microcontroller. We sought to expand this management capability to allow remote

management through the Ethernet connection. This paper details our experiences in

design/selection and implementation of a control and monitoring protocol and details the

workings of the protocol we selected for this application – Simple Network Management

Protocol (SNMP).

Protocol Selection

Our foremost concern in producing or selecting a control and monitoring protocol was to

achieve maximal functionality using the simplest possible protocol implementation. A

simple protocol conserves memory and development time. Furthermore we believe a

simple system is less likely to contain hidden flaws. We envisioned a client server

approach with each CobraNet device containing a server element that could respond to

requests from a client – typically some sort of workstation or control surface. We saw the

possibility, even likelihood of having multiple clients in a system. We considered it a

requirement that whatever protocol we adopted or designed offer support of multiple

clients and, of course, multiple servers.

We believe CobraNet derives significant benefit from its use of the standard Ethernet

family of networking technologies. Wherever possible, we have attempted to adopt

standard network methodologies. We believe that any proprietary protocol for control and

monitoring has to fully justify itself. To this end, we have put substantial effort into

surveying existing Ethernet control and monitoring protocols.

Just as the ubiquity of Ethernet drove us to adopt Ethernet as the physical media for

CobraNet, the ubiquity of Internet technology has driven us to favor the Internet Protocol

(IP) as a transport mechanism. The transport mechanism serves as the addressing and

delivery framework for all control protocol messages. It initially appeared as though an

IP implementation would be a complex undertaking. This was indicated by examination

the size some of the commercial and public domain C code implementing IP. The lightest

of these implementations weighed in at 72K bytes of object code. Closer examination of

IP reveals it a suite of independent and interdependent protocols. The bulk of the

complexity in the Internet protocol suite is in the Transmission Control Protocol (TCP).

TCP allows for reliable communications over an unreliable physical communications

link. It handles retransmission of lost packets, arrival of packets out of order and

duplicated packets. While a TCP level of service is required for many networking

applications, SNMP does not desire nor require the TCP services. SNMP is conventional-

ly carried on a truly simple User Datagram Protocol (UDP) transport. In addition to UDP

and the IP transport itself, we determined that a couple other protocols from the IP suite

would be required. The Address Resolution Protocol (ARP) translates IP addresses to

Ethernet Media Access Control (MAC) addresses. The Internet Control Message Protocol

(ICMP) provides basic diagnostic services for a network. We were confident that a

minimally functional UDP/IP stack could be composed with reasonable effort. We went

ahead and completed the IP transport portion of the project before knowing what protocol

we’d be running over it. Our experience concurred with and contributed to the finding

that IP networking is considerably scalable.

Our initial inclination was towards development of a proprietary protocol. We believed

our requirement for a small footprint and the desire to combine the local and network

monitoring functions were unique. We had gone so far as to publish a proposal for a

simple control and monitoring protocol called Management Interface (MI). MI would be

easy to implement because it was designed with our application and the capabilities of

our processing platform in mind. MI began to lose favor when portions of the protocol

supporting network management were deemed, by some, as overly complex for local

management. They were right. As much as we desired to kill two birds with one stone,

local communications is a different problem than network communications. A local

communications protocol operates in a homogenous environment where data and link

integrity issues are not a concern. As we went through design and implementation of a

much simpler protocol for local communications dubbed Host Management Interface

(HMI), we became convinced that different protocols would be required for the two

different applications. We proceeded to tackle the network protocol separately.

Our survey of control and monitoring protocols included Echelon LonTalk, CEBus Home

Plug and Play (HPnP) draft versions of the AES24 control and monitoring protocol,

SNMPv1 and SNMPv3, Common Management Information Protocol (CMIP), network

Remote Procedure Call (RPC) and Microsoft’s Common Object Model (COM). It was

obvious that the RPC protocols to a significant extent and COM to a great extent were not

designed to operate in an embedded context. We viewed the traditional network

management protocols, SNMP and CMIP as largely mutually exclusive. The same can be

said of the stand-alone control and monitoring protocols, LonTalk and HPnP. In each of

these categories we choose the most applicable protocol for more in-depth study. We gave

special consideration to AES24 because it targets audio applications. This process of

elimination left us with SNMP, LonTalk, AES24 and our MI protocol for further

consideration.

SNMP, LonTalk and AES24 take divergent approaches to control and monitoring of

network connected devices. Control and monitoring via SNMP and LonTalk is

accomplished almost exclusively through inspection and alteration of management

variables. This exclusive use of variables for control and monitoring is known as a

descriptive approach. The advantage of a descriptive approach is in reduction of protocol

primitives. The descriptive approach typically requires but two primitives – one to

inspect values and another to alter them. AES24 takes a more functional approach in that

control and monitoring is accomplished through the remote invocation of methods upon

managed objects. The advantage of the functional approach is that users are comfortable

with the way these systems operate. The functional “load preset 3” represents an arguably

more natural approach than an alternative descriptive interface which might be

implemented with “target preset number” and “current preset number” variables. With

regards to functional versus descriptive, we sided with the designers of SNMP who in

addition to recognizing the simplifying benefits of a descriptive approach, identified the

potential for an ever increasing command set including commands with arbitrarily

complex semantics in a functional approach.

SNMP requires a variable be polled in order to observe changes. LonTalk does the work

of monitoring network variables for changes thus freeing applications from the overhead

of doing so. This magic comes at the cost of increased complexity, however. LonTalk was

designed to be carried by a proprietary transport protocol over a proprietary physical

media known as LonWorks. LonTalk has since been released from LonWorks and may be

carried over Ethernet, though LonWorks remains its primary target. Since SNMP was

designed with UDP/IP and Ethernet in mind from the outset, it fit much more nicely into

our requirements.

SNMP was developed under the auspices of the Internet Engineering Task Force (IETF).

This is the same organization that standardized the IP protocol suite as well as many of

the other protocols present on the Internet today. The charter for development of SNMP

was to produce a truly simple management protocol to encourage rapid adoption and

deployment of network management for the Internet. The resulting SNMP is conceptually

very simple and was enthusiastically deployed almost immediately upon introduction in

1988. SNMP defines a total of five protocol primitives and a uniform addressing scheme

for all management variables. SNMP variables as well as the protocol itself are described

using an academic syntax called Abstract Syntax Notation One (ASN.1). SNMP uses

variable length addressing and the Basic Encoding Rules (BER) packet construction

associated with ASN.1.

Having narrowed in on SNMP as a potential control and monitoring protocol for

CobraNet, we still had the feeling that our MI protocol was simpler and more functional-

ly appropriate. Our doubts about using SNMP were allayed when we looked at what it

would be giving us. An SNMP managed device can be managed using off-the-shelf

network management packages such as HP OpenView, Tivoli NetView, Cabletron

SPECTRUM or Computer Associates Unicenter TNG. Given these choices, custom or

single-sourced software is not necessary to monitor and manage your network. If a

custom interface is desired, SNMP is well supported at the manager side with tools and

Application Programmers Interface (API) layers to get even higher level Visual Basic and

database applications talking SNMP. SNMP is also well supported at the agent side.

Several vendors offer SNMP agent implementations for embedded systems. Major

workstation operating systems typically include an SNMP agent. Commercially available

simulators and test suites can assist in development of an SNMP agent. And all of this

support would not be available if SNMP was not the well-deployed and dominant

network management standard that it is.

SNMP Architecture

SNMP operates according to a client server model. Under SNMP, servers go by the name

“agent” and clients are called “managers”. Agents exist within managed devices and host

management variables. Management variables may be inspected and altered by managers

using SNMP commands. A manager is typically an application running on a workstation.

There is no limit to the number of agents or managers on a network.

Almost all monitoring and control functions are accomplished through inspection and

alteration of management variables instantiated in the SNMP agent. Management

variables in an SNMP agent are organized in a tree structure called the Management

Information Base (MIB). Management variables are located at the nodes and leafs of the

MIB though many nodes simply serve as place holders and do not host a variable. Each

branch from a node is given a number. Branches are also given names. Variables are

uniquely addressed using an Object Identifier (OID). The OID is a data structure that

enumerates the path from the root of the MIB to the variable. Almost any type of data can

be represented in a MIB. Standard variable types include text strings and integers.

Additional data types may be derived from primitive types and conventions have been

established for organizing variables into multidimensional arrays.

A device’s MIB defines the set of management variables hosted by an SNMP agent.

MIBs are commonly documented in a language called Abstract Syntax Notation One

(ASN.1). This format enumerates and describes each variable, indicates its data type,

access rights and expected value range. Figure 1 shows a portion of Peak Audio’s MIB

for CobraNet devices. MIB compilers read ASN.1 to produce reports, and configuration

settings for network management systems. MIB compilers are also used as a tool to

ensure that a MIB is syntactically correct and to simplify implementation at both manager

and agent sides.

To encourage interoperability, MIBs are not constructed arbitrarily. The process of

defining a MIB begins with a standard MIB template called MIB-II. MIB-II defines the

basic variables and structure of the MIB. The basic structure defined by MIB-II is shown

in Figure 2. Supplementary MIB structures are defined for standard types of network

devices such as workstations, printers, routers, hubs, etc. Wherever applicable, agents

follow these basic templates to assure maximal interoperability. Device-specific

extensions to a standard MIB structure are rooted in the “enterprises” section of the

management hierarchy. Devices with little resemblance to standard network components

may feature many variables in this area. Any organization may obtain enterprise branch

assignment by contacting the Internet Assigned Numbers Authority (IANA).

SNMP Commands

For the most part SNMP operates in a question-answer mode. A typical transaction sees a

manager sending a request packet to an agent. The agent performs the requested

operation then returns a response packet to the manager. There is no connection between

manager and agent between transactions. If either the request or response packet is lost

on the network, it is the manager’s responsibility to detect this and retransmit the request

if desired. If the retransmission is the result of a lost response packet, the retransmission

will have the agent fielding the same request twice. Because of this possibility, SNMP

variables must be designed to be idempotent – multiple applications of a request have the

same effect as one.

SNMP version 1 (SNMPv1) defines five packet types. GetRequest allows a manager to

inspect variables on an agent. SetRequest allows a manger to alter variables on an agent.

A manager can use GetNextRequest to discover through traversal all or part of an

agent’s MIB. An agent uses the GetRespose to respond to all manager requests. The

agent may also transmit a Trap as the result of a local triggering event such as a power

up.

SNMP Packet Structure

The structure of the SNMP request/response packet is shown in

Figure 3. This structure is used for all but the Trap packet type. The first two sections of

the packet, the IP and UDP headers relate to the UDP/IP transport and are not actually

part of the SNMP protocol. The SNMP header begins with the Version field indicating

the SNMP protocol version. There are currently three deployed SNMP versions. Each

new version is backward compatible with previous versions. The Community text field

is a password than can be used to control access to devices. A default community,

“public,” is most commonly used. The Protocol Data Unit (PDU) Type distinguishes the

five types of SNMP packets. Packet types are enumerated in Figure 4. The Request ID is

used to pair requests and responses. The manager generates a unique integer for each

request. An agent’s response to the request will contain the same request ID value. The

Error Status is used in response packets to indicate the overall result of a request as

detailed in Figure 5. In the event of a non-zero error status, Error Index indicates the

OID/value pair that caused the error. The remainder of the packet consists of OID/value

pairs. Even when the value is unused, as it the case in the GetRequest packet, it is given a

null value and included as a placeholder.

The use of the same packet structure for all requests and responses simplifies agent

implementation. The agent can directly use the request packet as the basis for a response.

A response to a SetRequest merely requires that the agent change the PDU Type field

before sending the original request packet back to the manager.

The trap packet type follows the slightly different format shown in Figure 6. Trap

contains an additional header information prior to the OID/value pairs. The Enterprise

field contains the OID of the sub-tree assigned to the manufacturer of the device

transmitting the trap. The Agent Address is the IP address of the agent transmitting the

trap. Trap Types are described in Figure 7. Six specific traps are defined, with a seventh

one allowing vendors to implement an enterprise specific trap. The enterprise specific

trap is indicated in the Enterprise Specific Trap field. The enterprise specific trap is zero

for standard trap types.

Traps are sent asynchronously by agents to managers. Traps are useful for focusing the

attention of a network manager. On a large network, using SNMP’s request/response

protocol to sequentially poll all network elements, it may take a considerable time for a

manager to discover a malfunctioning piece of equipment. This continuous polling of all

network components would also produce a considerable amount of traffic on the network.

Through a judicious use of traps, a manager can be alerted to exceptional events

throughout the network and use request/response transactions to obtain additional detail.

The details of how traps are set up and used under SNMP are largely implementation

specific.

BER Encoding

We have described SNMP packets as consisting of various fields without giving detail as

to how these fields are constructed. SNMP packets are built according to the variable-

length Basic Encoding Rules (BER) associated with ASN.1. This encoding scheme

insures that all data is encoded uniformly when sent over the network regardless of how it

is stored on the agent or manager. BER eliminates big-endian/little-endian, 16/32-bit

integer and EBCDIC/ASCII clashes. Unfortunately, producing and decoding BER’s

variable length byte oriented packets on today’s 16, 24, 32 and 64-bit processors is

difficult to accomplish efficiently.

The basic structure of a BER encoded field is shown in Figure 8. Type identifies the data

type of value the encoded. Examples of identifier types are integer, octet (binary) string,

and display (text) string. Length indicates the size, in bytes of the Value field. The length

field is itself variable length so that data values larger than 255 bytes may be encoded.

The length field may consist of one octet for short form (up to 128 values), or a long form

of up to 128 octets. Value contains zero or more bytes and conveys the value of the data.

Figure 9 shows and example BER encoding for an integer.

The scope of BER encoding actually extends beyond the binary representation of the

individual fields in a SNMP packet. Under BER the entire packet is considered a single

data field which hosts BER encoded sub-fields. Many of those sub-fields may well host

their own BER encoded sub-fields.

CobraNet SNMP Implementation

Management of a CobraNet device is accomplished through inspection and alteration of a

set of management variables. The variables themselves are nothing more than scattered

data storage within our embedded application. These management variables are

simultaneously accessible to a local microprocessor through the HMI and to any SNMP

manager through the SNMP agent. Variables as seen through HMI are arranged in a

sparsely populated 24-bit (16Mword) address space. Variables as seen through SNMP are

arranged in a tree structure according to MIB guidelines. There exists a mapping structure

associated with each of these interfaces to perform mappings to the shared variables. It

was imperative to keep the memory overhead in these mappings to a minimum. This was

accomplished on the HMI side by taking a block based approach. By arranging data in

contiguous blocks both in physical memory and in the 24-bit HMI address space, a single

mapping entry serves a handful of variables. Combined with a concise mapping structure,

we were able to keep memory consumed by the mapping mechanism well below the size

of the actual data it serves. We devised SNMP mapping a scheme for representing a tree

structure which requires only one memory word per node. The SNMP mapping data is

therefore approximately the same size as the data it supports.

We took special care to insure that control and monitoring functions did not interfere with

the main task at hand – delivery of uninterrupted audio over the network. A preemptive

task scheduler assures that audio functionality always takes precedence over the fielding

of management requests. We envision scenarios, such as the presence of multiple active

managers on a network, were management requests arrive at the agent faster than they

can be processed. Under these circumstances we are forced to arbitrarily ignore request

packets. Fortunately the unreliable UDP/IP transport has taught SNMP managers to

expect this sort of behavior if not from the agents then from the network itself. A manager

cannot distinguish between packets are dropped in transit and ones occasionally ignored

once reaching an agent.

Parsing and generating the byte-oriented SNMP messages on a word-oriented processor

is a less than painless undertaking. A class of byte manipulation functions aids in these

chores. Yes, you can write object oriented assembly code. Some of the details of an

SNMP implementation can be quite upending if not addressed in the design process. For

instance, in the event of an error, none of a request is supposed to be processed. This

requires you to validate all OID/value pairs in a SetRequest before applying the first.

Conclusions

We encourage anyone considering embarking on a communications protocol design to

spend the time to survey what’s out there. You’ll be surprised at how many you find. You

may even be convinced, as we eventually were, that world is not short of communications

protocols. We found SNMP to suit our particular needs and that implementing SNMP and

UDP/IP on platforms with limited resources is feasible. SNMP is particularly applicable

to IP and Ethernet networks

SNMP provides the basic functionality required for control and monitoring of network

connected audio devices. The variable based descriptive approach keeps the communica-

tions protocol itself from expanding but does not limit expansion of management

functionality. With provisions for encapsulating multiple transactions in a single packet,

performance under SNMP can be quite good. Traps can be used to selectively enhance

recognition of far-flung asynchronous events, something that is typically difficult to

achieve through polling.

SNMP is well deployed and well supported. The IETF continues upkeep on SNMP with

backward compatible revisions and remains sensitive to the need to keep the simple in

SNMP. Interoperability is achieved through the ongoing process of MIB standardization.

Bibliography

Case, J., et al., “A Simple Network Management Protocol (SNMP)”, RFC 1157, Network

Working Group, Internet Engineering Task Force, May 1990,

http://info.internet.isi.edu/in-notes/rfc/files/rfc1157.txt.

McCloghrie. K. and Rose, M.T., eds., “Management Information Base for Network

Management of TCP/IP-based internets:MIB-II”, RFC 1213, Network Working Group,

Internet Engineering Task Force, March, 1991, http://info.internet.isi.edu/in-

notes/rfc/files/rfc1213.txt.

Kastenholtz, F. ed., “SNMP Communications Services”, RFC 1270, Network Working

Group, Internet Engineering Task Force, October 1991, http://info.internet.isi.edu/in-

notes/rfc/files/rfc1270.txt.

Harrington, D., et al., “An Architecture for Describing SNMP Management Frame-

works”, RFC 2271, Network Working Group, Internet Engineering Task Force, January

1998, http://info.internet.isi.edu/in-notes/rfc/files/rfc2272.txt.

Case, J., et al., “Message Processing and Dispatching for the Simple Network Manage-

ment Protocol (SNMP)”, RFC 2272, Network Working Group, Internet Engineering Task

Force, January 1998, http://info.internet.isi.edu/in-notes/rfc/files/rfc2272.txt.

“AES standard for sound system control – Application protocol for controlling and

monitoring audio devices via digital data networks – Part 1: Principles, formats, and basic

procedures”, Audio Engineering Society, New York, NY, May 15, 1997.

Combs, J. “Report on Downward Scalability of IP for Small Microcontrollers”, Audio

Engineering Society SC-10-1-h, New York, NY, November 25, 1997.

 “LonTalk Protocol Specification”, Echelon Corporation, Palo Alto, CA, Version 3.0,

1994, http://www.lonworks.echelon.com/Core/protocol/Default.htm.

“Home Plug and Play Specification”, CEBus Industry Council, Version 0.91, July 22,

1997, http://www.cebus.org/hpnp/.

Stevens, W. Richard. TCP/IP Illustrated Volumes I,II,III. Reading, MA: Addison-Wesley,

1994.

Perkins, David, Evan McGinnis. Understanding SNMP MIBs. Upper Saddle River, NJ:

Prentice Hall, 1997.

Townsend, Robert L. SNMP Application Developer’s Guide. New York, NY: Van

Nostrand Reinhold, 1995.

Rogerson, Dale. Inside COM. Redmond, WA: Microsoft Press, 1997.

Rosenberry, Ward and Tegue, Jim, Distributing Applications Across DCE and Windows

NT, Sebastopol, CA: O’Reilly & Associates, Inc., 1993.

Figures

PEAKAUDIO-MIB DEFINITIONS ::= BEGIN

 -- Title: CobraNet MIB version 1.0

 -- Date: 20 October 1997

 -- By: Tom Holtzen

 IMPORTS

 enterprises

 FROM RFC1155-SMI

 OBJECT-TYPE

 FROM RFC-1212

 DisplayString

 FROM RFC-1213;

 PeakAudio OBJECT IDENTIFIER ::= { enterprises 2680 }

 cobraNet OBJECT IDENTIFIER ::= { PeakAudio 1 }

 audio OBJECT IDENTIFIER ::= { cobraNet 2 }

 -- audio ***

 audioTable OBJECT-TYPE

 SYNTAX SEQUENCE OF AudioEntry

 ACCESS not-accessible

 STATUS mandatory

 DESCRIPTION

 "Audio metering table."

 ::= { audio 1 }

 audioEntry OBJECT-TYPE

 SYNTAX AudioEntry

 ACCESS not-accessible

 STATUS mandatory

 DESCRIPTION

 "Row."

 INDEX { audioIndex }

 ::= { audioTable 1 }

 AudioEntry ::=

 SEQUENCE {

 audioIndex

 INTEGER,

 audioMeterChannel

 INTEGER,

 audioPeakLevel

 INTEGER,

 audioCurrLevel

 INTEGER

 }

 audioIndex OBJECT-TYPE

 SYNTAX INTEGER (0..32)

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Table Index"

 ::= { audioEntry 1 }

 audioMeterChannel OBJECT-TYPE

 SYNTAX INTEGER (0..'FF'h)

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 "Channel assignment"

 ::= { audioEntry 2 }

 audioCurrLevel OBJECT-TYPE

 SYNTAX INTEGER (0..'800000'h)

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 "Audio current level"

 ::= { audioEntry 4 }

 audioLoopTable OBJECT-TYPE

 SYNTAX SEQUENCE OF AudioLoopEntry

 ACCESS not-accessible

 STATUS mandatory

 DESCRIPTION

 "Audio loop back table."

 ::= { audio 2 }

 audioLoopEntry OBJECT-TYPE

 SYNTAX AudioEntry

 ACCESS not-accessible

 STATUS mandatory

 DESCRIPTION

 "Row."

 INDEX { audioLoopIndex }

 ::= { audioLoopTable 1 }

 AudioLoopEntry ::=

 SEQUENCE {

 audioLoopIndex

 INTEGER,

 audioSource

 INTEGER,

 audioDest

 INTEGER

 }

 audioLoopIndex OBJECT-TYPE

 SYNTAX INTEGER (0..32)

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Table Index"

 ::= { audioLoopEntry 1 }

 audioSource OBJECT-TYPE

 SYNTAX INTEGER (0..'FF'h)

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 "Source assignment. (0 indicates silence source)

 Default value = 0"

 ::= { audioLoopEntry 2 }

 audioDest OBJECT-TYPE

 SYNTAX INTEGER (0..'FF'h)

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 "Destination assignment (0 indicates no destination).

 Default value = 0"

 ::= { audioLoopEntry 3 }

END

Figure 1: Portion of CobraNet MIB in ASN.1

Root

ccitt(0) iso(1) joint-iso-ccitt(2)

dod(6)

org(3)

internet(1)

directory(1) mgmt(2) experimental(3) private(4)

enterprises(1) mib(1)

system(1) interfaces(2) at(3) ip(4) icmp(5) tcp(6) udp(7)
. . .

.

Figure 2: Base SNMP variable hierarchy (MIB-II)

IP

Header

UDP

Header
Version Community PDU Request

ID

Error

Status Error

Index
OID Value . . . OID Value

Common

SNMP

Header

Get / Set

Header
Variables

Transport

Header

Figure 3: SNMP request/response packet

PDU Type Name Direction Usage

0 GetRequest Manager to agent Requests enumerated variables be

read.

1 GetNextRequest Manager to agent Returns OID and values for

lexicographical successors to

specified variables.

2 GetResponse Agent to manger Agent response to GetRequest,

GetNextRequest and SetRequest.

Contains current values of

enumerated variables.

3 SetRequest Manager to agent Requests enumerated variables be

written with supplied values.

4 Trap Agent to manager Sent asynchronously upon

detection of a triggering event at

the agent.

Figure 4: SNMP packet PDU Type field values and meanings

Error Status Name Description

0 NoError All is ok

1 TooBig Indicates that the response to the request would be too

large to send back in a single packet. Agents are only

required to support packets larger than 484 bytes.

Ethernet may carry packets up to 1500 bytes. Support for

these larger packets is encouraged.

2 NoSuchName Indicates that a request referenced an OID which is not

accessible.

3 BadValue A set operation specified an invalid value or syntax.

4 ReadOnly A set operation attempted to modify a read-only variable.

5 GenErr A catch all error, which may be returned when no other

recourse is available

Figure 5: Error Status values

PDU (4) Enterprise Agent

Address

Trap

Type

Specific

Code

Time

Stamp

OID Value . . . OID Value

Trap

Header

Interesting

Variables

Figure 6: Trap packet format

Trap Type Name Description

0 ColdStart Agent is initializing itself.

1 WarmStart Agent is reinitializing itself.

2 LinkDown An interface has changed from the up to the down

state. The first variable in the message identifies the

interface

3 LinkUp An interface has changed from the down to the up

state. The first variable in the message identifies the

interface

4 AuthenticationFai-

lure

A message was received from an SNMP manager

with an invalid community.

5 EgpNeighborLoss An EGP peer has changed to the down state. The first

variable in the message contains the IP address of the

peer.

6 EnterpriseSpecific Look in the specific code field for the information on

the trap.

Figure 7: Trap types

Type Length Value Octet 1 . . . Value Octet n

Figure 8: BER encoded value

Integer values are represented in two’s-complement. Sign extending the value so that the

value is expressed as a multiple of 8 bits forms the basis for the encoding for the integer

value 255. Note that expressing 255 as a two’s compliment value requires 9 bits, the 9
th

being the sign bit.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Add the type and length fields to arrive at the final 4 byte encoding.

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Tag Universal 1 Length 2

Value (1 of 2) Value (2 of 2)

Figure 9: Integer BER example

