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Introduction 

 

Having developed a means in CobraNet for delivering high quality real time-audio over a 

standard Ethernet network, we have recently turned our attention to the implementation 

of an accompanying control protocol for CobraNet devices. CobraNet is a combination of 

hardware, software and protocol for transporting isochronous, asynchronous and clock 

data over an Ethernet computer network. Isochronous refers to timing sensitive services 

such as live audio, video and real-time control. A CobraNet device consists of a 100Mbit 

Ethernet controller and digital signal processor with associated memory and audio I/O. A 

CobraNet device may be managed through a parallel data connection by an optional local 

microcontroller. We sought to expand this management capability to allow remote 

management through the Ethernet connection. This paper details our experiences in 

design/selection and implementation of a control and monitoring protocol and details the 

workings of the protocol we selected for this application – Simple Network Management 

Protocol (SNMP). 

 

Protocol Selection 

 

Our foremost concern in producing or selecting a control and monitoring protocol was to 

achieve maximal functionality using the simplest possible protocol implementation. A 

simple protocol conserves memory and development time. Furthermore we believe a 

simple system is less likely to contain hidden flaws. We envisioned a client server 

approach with each CobraNet device containing a server element that could respond to 

requests from a client – typically some sort of workstation or control surface. We saw the 

possibility, even likelihood of having multiple clients in a system. We considered it a 

requirement that whatever protocol we adopted or designed offer support of multiple 

clients and, of course, multiple servers. 

 

We believe CobraNet derives significant benefit from its use of the standard Ethernet 

family of networking technologies. Wherever possible, we have attempted to adopt 

standard network methodologies. We believe that any proprietary protocol for control and 

monitoring has to fully justify itself. To this end, we have put substantial effort into 

surveying existing Ethernet control and monitoring protocols. 

 

Just as the ubiquity of Ethernet drove us to adopt Ethernet as the physical media for 

CobraNet, the ubiquity of Internet technology has driven us to favor the Internet Protocol 

(IP) as a transport mechanism. The transport mechanism serves as the addressing and 

delivery framework for all control protocol messages. It initially appeared as though an 

IP implementation would be a complex undertaking. This was indicated by examination 

the size some of the commercial and public domain C code implementing IP. The lightest 

of these implementations weighed in at 72K bytes of object code. Closer examination of 

IP reveals it a suite of independent and interdependent protocols. The bulk of the 



complexity in the Internet protocol suite is in the Transmission Control Protocol (TCP). 

TCP allows for reliable communications over an unreliable physical communications 

link. It handles retransmission of lost packets, arrival of packets out of order and 

duplicated packets. While a TCP level of service is required for many networking 

applications, SNMP does not desire nor require the TCP services. SNMP is conventional-

ly carried on a truly simple User Datagram Protocol (UDP) transport. In addition to UDP 

and the IP transport itself, we determined that a couple other protocols from the IP suite 

would be required. The Address Resolution Protocol (ARP) translates IP addresses to 

Ethernet Media Access Control (MAC) addresses. The Internet Control Message Protocol 

(ICMP) provides basic diagnostic services for a network. We were confident that a 

minimally functional UDP/IP stack could be composed with reasonable effort. We went 

ahead and completed the IP transport portion of the project before knowing what protocol 

we’d be running over it. Our experience concurred with and contributed to the finding 

that IP networking is considerably scalable. 

 

Our initial inclination was towards development of a proprietary protocol. We believed 

our requirement for a small footprint and the desire to combine the local and network 

monitoring functions were unique. We had gone so far as to publish a proposal for a 

simple control and monitoring protocol called Management Interface (MI). MI would be 

easy to implement because it was designed with our application and the capabilities of 

our processing platform in mind. MI began to lose favor when portions of the protocol 

supporting network management were deemed, by some, as overly complex for local 

management. They were right. As much as we desired to kill two birds with one stone, 

local communications is a different problem than network communications. A local 

communications protocol operates in a homogenous environment where data and link 

integrity issues are not a concern. As we went through design and implementation of a 

much simpler protocol for local communications dubbed Host Management Interface 

(HMI), we became convinced that different protocols would be required for the two 

different applications. We proceeded to tackle the network protocol separately. 

 

Our survey of control and monitoring protocols included Echelon LonTalk, CEBus Home 

Plug and Play (HPnP) draft versions of the AES24 control and monitoring protocol, 

SNMPv1 and SNMPv3, Common Management Information Protocol (CMIP), network 

Remote Procedure Call (RPC) and Microsoft’s Common Object Model (COM). It was 

obvious that the RPC protocols to a significant extent and COM to a great extent were not 

designed to operate in an embedded context. We viewed the traditional network 

management protocols, SNMP and CMIP as largely mutually exclusive. The same can be 

said of the stand-alone control and monitoring protocols, LonTalk and HPnP. In each of 

these categories we choose the most applicable protocol for more in-depth study. We gave 

special consideration to AES24 because it targets audio applications. This process of 

elimination left us with SNMP, LonTalk, AES24 and our MI protocol for further 

consideration. 

 

SNMP, LonTalk and AES24 take divergent approaches to control and monitoring of 

network connected devices. Control and monitoring via SNMP and LonTalk is 

accomplished almost exclusively through inspection and alteration of management 



variables. This exclusive use of variables for control and monitoring is known as a 

descriptive approach. The advantage of a descriptive approach is in reduction of protocol 

primitives. The descriptive approach typically requires but two primitives – one to 

inspect values and another to alter them. AES24 takes a more functional approach in that 

control and monitoring is accomplished through the remote invocation of methods upon 

managed objects. The advantage of the functional approach is that users are comfortable 

with the way these systems operate. The functional “load preset 3” represents an arguably 

more natural approach than an alternative descriptive interface which might be 

implemented with “target preset number” and “current preset number” variables. With 

regards to functional versus descriptive, we sided with the designers of SNMP who in 

addition to recognizing the simplifying benefits of a descriptive approach, identified the 

potential for an ever increasing command set including commands with arbitrarily 

complex semantics in a functional approach. 

 

SNMP requires a variable be polled in order to observe changes. LonTalk does the work 

of monitoring network variables for changes thus freeing applications from the overhead 

of doing so. This magic comes at the cost of increased complexity, however. LonTalk was 

designed to be carried by a proprietary transport protocol over a proprietary physical 

media known as LonWorks. LonTalk has since been released from LonWorks and may be 

carried over Ethernet, though LonWorks remains its primary target. Since SNMP was 

designed with UDP/IP and Ethernet in mind from the outset, it fit much more nicely into 

our requirements. 

 

SNMP was developed under the auspices of the Internet Engineering Task Force (IETF). 

This is the same organization that standardized the IP protocol suite as well as many of 

the other protocols present on the Internet today. The charter for development of SNMP 

was to produce a truly simple management protocol to encourage rapid adoption and 

deployment of network management for the Internet. The resulting SNMP is conceptually 

very simple and was enthusiastically deployed almost immediately upon introduction in 

1988. SNMP defines a total of five protocol primitives and a uniform addressing scheme 

for all management variables. SNMP variables as well as the protocol itself are described 

using an academic syntax called Abstract Syntax Notation One (ASN.1). SNMP uses 

variable length addressing and the Basic Encoding Rules (BER) packet construction 

associated with ASN.1.  

 

Having narrowed in on SNMP as a potential control and monitoring protocol for 

CobraNet, we still had the feeling that our MI protocol was simpler and more functional-

ly appropriate. Our doubts about using SNMP were allayed when we looked at what it 

would be giving us. An SNMP managed device can be managed using off-the-shelf 

network management packages such as HP OpenView, Tivoli NetView, Cabletron 

SPECTRUM or Computer Associates Unicenter TNG. Given these choices, custom or 

single-sourced software is not necessary to monitor and manage your network. If a 

custom interface is desired, SNMP is well supported at the manager side with tools and 

Application Programmers Interface (API) layers to get even higher level Visual Basic and 

database applications talking SNMP. SNMP is also well supported at the agent side. 

Several vendors offer SNMP agent implementations for embedded systems. Major 



workstation operating systems typically include an SNMP agent. Commercially available 

simulators and test suites can assist in development of an SNMP agent. And all of this 

support would not be available if SNMP was not the well-deployed and dominant 

network management standard that it is. 

 

SNMP Architecture 

 

SNMP operates according to a client server model. Under SNMP, servers go by the name 

“agent” and clients are called “managers”. Agents exist within managed devices and host 

management variables. Management variables may be inspected and altered by managers 

using SNMP commands. A manager is typically an application running on a workstation. 

There is no limit to the number of agents or managers on a network. 

 

Almost all monitoring and control functions are accomplished through inspection and 

alteration of management variables instantiated in the SNMP agent. Management 

variables in an SNMP agent are organized in a tree structure called the Management 

Information Base (MIB). Management variables are located at the nodes and leafs of the 

MIB though many nodes simply serve as place holders and do not host a variable. Each 

branch from a node is given a number. Branches are also given names. Variables are 

uniquely addressed using an Object Identifier (OID). The OID is a data structure that 

enumerates the path from the root of the MIB to the variable. Almost any type of data can 

be represented in a MIB. Standard variable types include text strings and integers. 

Additional data types may be derived from primitive types and conventions have been 

established for organizing variables into multidimensional arrays. 

 

A device’s MIB defines the set of management variables hosted by an SNMP agent. 

MIBs are commonly documented in a language called Abstract Syntax Notation One 

(ASN.1). This format enumerates and describes each variable, indicates its data type, 

access rights and expected value range. Figure 1 shows a portion of Peak Audio’s MIB 

for CobraNet devices. MIB compilers read ASN.1 to produce reports, and configuration 

settings for network management systems. MIB compilers are also used as a tool to 

ensure that a MIB is syntactically correct and to simplify implementation at both manager 

and agent sides. 

 

To encourage interoperability, MIBs are not constructed arbitrarily. The process of 

defining a MIB begins with a standard MIB template called MIB-II. MIB-II defines the 

basic variables and structure of the MIB. The basic structure defined by MIB-II is shown 

in Figure 2. Supplementary MIB structures are defined for standard types of network 

devices such as workstations, printers, routers, hubs, etc. Wherever applicable, agents 

follow these basic templates to assure maximal interoperability. Device-specific 

extensions to a standard MIB structure are rooted in the “enterprises” section of the 

management hierarchy. Devices with little resemblance to standard network components 

may feature many variables in this area. Any organization may obtain enterprise branch 

assignment by contacting the Internet Assigned Numbers Authority (IANA). 

 



SNMP Commands 

 

For the most part SNMP operates in a question-answer mode. A typical transaction sees a 

manager sending a request packet to an agent. The agent performs the requested 

operation then returns a response packet to the manager. There is no connection between 

manager and agent between transactions. If either the request or response packet is lost 

on the network, it is the manager’s responsibility to detect this and retransmit the request 

if desired. If the retransmission is the result of a lost response packet, the retransmission 

will have the agent fielding the same request twice. Because of this possibility, SNMP 

variables must be designed to be idempotent – multiple applications of a request have the 

same effect as one. 

 

SNMP version 1 (SNMPv1) defines five packet types. GetRequest allows a manager to 

inspect variables on an agent. SetRequest allows a manger to alter variables on an agent. 

A manager can use GetNextRequest to discover through traversal all or part of an 

agent’s MIB. An agent uses the GetRespose to respond to all manager requests. The 

agent may also transmit a Trap as the result of a local triggering event such as a power 

up. 

 

SNMP Packet Structure 

 

The structure of the SNMP request/response packet is shown in  

Figure 3. This structure is used for all but the Trap packet type. The first two sections of 

the packet, the IP and UDP headers relate to the UDP/IP transport and are not actually 

part of the SNMP protocol. The SNMP header begins with the Version field indicating 

the SNMP protocol version. There are currently three deployed SNMP versions. Each 

new version is backward compatible with previous versions. The Community text field 

is a password than can be used to control access to devices. A default community, 

“public,” is most commonly used. The Protocol Data Unit (PDU) Type distinguishes the 

five types of SNMP packets. Packet types are enumerated in Figure 4. The Request ID is 

used to pair requests and responses. The manager generates a unique integer for each 

request. An agent’s response to the request will contain the same request ID value. The 

Error Status is used in response packets to indicate the overall result of a request as 

detailed in Figure 5. In the event of a non-zero error status, Error Index indicates the 

OID/value pair that caused the error. The remainder of the packet consists of OID/value 

pairs. Even when the value is unused, as it the case in the GetRequest packet, it is given a 

null value and included as a placeholder. 

 

The use of the same packet structure for all requests and responses simplifies agent 

implementation. The agent can directly use the request packet as the basis for a response. 

A response to a SetRequest merely requires that the agent change the PDU Type field 

before sending the original request packet back to the manager. 

 

The trap packet type follows the slightly different format shown in Figure 6. Trap 

contains an additional header information prior to the OID/value pairs. The Enterprise 

field contains the OID of the sub-tree assigned to the manufacturer of the device 



transmitting the trap. The Agent Address is the IP address of the agent transmitting the 

trap. Trap Types are described in Figure 7. Six specific traps are defined, with a seventh 

one allowing vendors to implement an enterprise specific trap. The enterprise specific 

trap is indicated in the Enterprise Specific Trap field. The enterprise specific trap is zero 

for standard trap types. 

 

Traps are sent asynchronously by agents to managers. Traps are useful for focusing the 

attention of a network manager. On a large network, using SNMP’s request/response 

protocol to sequentially poll all network elements, it may take a considerable time for a 

manager to discover a malfunctioning piece of equipment. This continuous polling of all 

network components would also produce a considerable amount of traffic on the network. 

Through a judicious use of traps, a manager can be alerted to exceptional events 

throughout the network and use request/response transactions to obtain additional detail. 

The details of how traps are set up and used under SNMP are largely implementation 

specific. 

 

BER Encoding 

 

We have described SNMP packets as consisting of various fields without giving detail as 

to how these fields are constructed. SNMP packets are built according to the variable-

length Basic Encoding Rules (BER) associated with ASN.1. This encoding scheme 

insures that all data is encoded uniformly when sent over the network regardless of how it 

is stored on the agent or manager. BER eliminates big-endian/little-endian, 16/32-bit 

integer and EBCDIC/ASCII clashes. Unfortunately, producing and decoding BER’s 

variable length byte oriented packets on today’s 16, 24, 32 and 64-bit processors is 

difficult to accomplish efficiently. 

 

The basic structure of a BER encoded field is shown in Figure 8. Type identifies the data 

type of value the encoded. Examples of identifier types are integer, octet (binary) string, 

and display (text) string. Length indicates the size, in bytes of the Value field. The length 

field is itself variable length so that data values larger than 255 bytes may be encoded. 

The length field may consist of one octet for short form (up to 128 values), or a long form 

of up to 128 octets. Value contains zero or more bytes and conveys the value of the data. 

Figure 9 shows and example BER encoding for an integer. 

 

The scope of BER encoding actually extends beyond the binary representation of the 

individual fields in a SNMP packet. Under BER the entire packet is considered a single 

data field which hosts BER encoded sub-fields. Many of those sub-fields may well host 

their own BER encoded sub-fields.  

 

CobraNet SNMP Implementation 

 

Management of a CobraNet device is accomplished through inspection and alteration of a 

set of management variables. The variables themselves are nothing more than scattered 

data storage within our embedded application. These management variables are 

simultaneously accessible to a local microprocessor through the HMI and to any SNMP 



manager through the SNMP agent. Variables as seen through HMI are arranged in a 

sparsely populated 24-bit (16Mword) address space. Variables as seen through SNMP are 

arranged in a tree structure according to MIB guidelines. There exists a mapping structure 

associated with each of these interfaces to perform mappings to the shared variables. It 

was imperative to keep the memory overhead in these mappings to a minimum. This was 

accomplished on the HMI side by taking a block based approach. By arranging data in 

contiguous blocks both in physical memory and in the 24-bit HMI address space, a single 

mapping entry serves a handful of variables. Combined with a concise mapping structure, 

we were able to keep memory consumed by the mapping mechanism well below the size 

of the actual data it serves. We devised SNMP mapping a scheme for representing a tree 

structure which requires only one memory word per node. The SNMP mapping data is 

therefore approximately the same size as the data it supports. 

 

We took special care to insure that control and monitoring functions did not interfere with 

the main task at hand – delivery of uninterrupted audio over the network. A preemptive 

task scheduler assures that audio functionality always takes precedence over the fielding 

of management requests. We envision scenarios, such as the presence of multiple active 

managers on a network, were management requests arrive at the agent faster than they 

can be processed. Under these circumstances we are forced to arbitrarily ignore request 

packets. Fortunately the unreliable UDP/IP transport has taught SNMP managers to 

expect this sort of behavior if not from the agents then from the network itself. A manager 

cannot distinguish between packets are dropped in transit and ones occasionally ignored 

once reaching an agent. 

  

Parsing and generating the byte-oriented SNMP messages on a word-oriented processor 

is a less than painless undertaking. A class of byte manipulation functions aids in these 

chores. Yes, you can write object oriented assembly code. Some of the details of an 

SNMP implementation can be quite upending if not addressed in the design process. For 

instance, in the event of an error, none of a request is supposed to be processed. This 

requires you to validate all OID/value pairs in a SetRequest before applying the first. 

 

Conclusions 

 

We encourage anyone considering embarking on a communications protocol design to 

spend the time to survey what’s out there. You’ll be surprised at how many you find. You 

may even be convinced, as we eventually were, that world is not short of communications 

protocols. We found SNMP to suit our particular needs and that implementing SNMP and 

UDP/IP on platforms with limited resources is feasible. SNMP is particularly applicable 

to IP and Ethernet networks 

 

SNMP provides the basic functionality required for control and monitoring of network 

connected audio devices. The variable based descriptive approach keeps the communica-

tions protocol itself from expanding but does not limit expansion of management 

functionality. With provisions for encapsulating multiple transactions in a single packet, 

performance under SNMP can be quite good. Traps can be used to selectively enhance 



recognition of far-flung asynchronous events, something that is typically difficult to 

achieve through polling. 

 

SNMP is well deployed and well supported. The IETF continues upkeep on SNMP with 

backward compatible revisions and remains sensitive to the need to keep the simple in 

SNMP. Interoperability is achieved through the ongoing process of MIB standardization.  
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Figures 

 
PEAKAUDIO-MIB DEFINITIONS ::= BEGIN 

  

     -- Title:  CobraNet MIB version 1.0 

     -- Date:  20 October 1997 

     -- By:   Tom Holtzen 

 

     IMPORTS 

         enterprises 

             FROM RFC1155-SMI 

         OBJECT-TYPE 

             FROM RFC-1212 

         DisplayString 

             FROM RFC-1213; 

 

     PeakAudio    OBJECT IDENTIFIER ::= { enterprises 2680 } 

 

     cobraNet      OBJECT IDENTIFIER ::= { PeakAudio 1 } 

 

     audio       OBJECT IDENTIFIER ::= { cobraNet 2 } 

 

     -- audio ************************************************************* 

 

     audioTable OBJECT-TYPE 

       SYNTAX SEQUENCE OF AudioEntry 

       ACCESS not-accessible 

       STATUS mandatory 

       DESCRIPTION 

           "Audio metering table." 

       ::= { audio 1 } 

 

     audioEntry OBJECT-TYPE 

       SYNTAX AudioEntry 

       ACCESS not-accessible 

       STATUS mandatory 

       DESCRIPTION 

           "Row." 

       INDEX  { audioIndex } 

       ::= { audioTable 1 } 

 

     AudioEntry ::= 

       SEQUENCE { 

         audioIndex 

           INTEGER, 

         audioMeterChannel 

           INTEGER, 

         audioPeakLevel 

           INTEGER, 

         audioCurrLevel 

           INTEGER 

       } 

 



     audioIndex OBJECT-TYPE 

       SYNTAX INTEGER (0..32) 

       ACCESS read-only 

       STATUS mandatory 

       DESCRIPTION 

           "Table Index" 

       ::= { audioEntry 1 } 

 

     audioMeterChannel OBJECT-TYPE 

       SYNTAX INTEGER (0..'FF'h) 

       ACCESS read-write 

       STATUS mandatory 

       DESCRIPTION 

           "Channel assignment" 

       ::= { audioEntry 2 } 

 

     audioCurrLevel OBJECT-TYPE 

       SYNTAX INTEGER (0..'800000'h) 

       ACCESS read-write 

       STATUS mandatory 

       DESCRIPTION 

           "Audio current level" 

       ::= { audioEntry 4 } 

 

     audioLoopTable OBJECT-TYPE 

       SYNTAX SEQUENCE OF AudioLoopEntry 

       ACCESS not-accessible 

       STATUS mandatory 

       DESCRIPTION 

           "Audio loop back table." 

       ::= { audio 2 } 

 

     audioLoopEntry OBJECT-TYPE 

       SYNTAX AudioEntry 

       ACCESS not-accessible 

       STATUS mandatory 

       DESCRIPTION 

           "Row." 

       INDEX  { audioLoopIndex } 

       ::= { audioLoopTable 1 } 

 

     AudioLoopEntry ::= 

       SEQUENCE { 

         audioLoopIndex 

           INTEGER, 

         audioSource 

           INTEGER, 

         audioDest 

           INTEGER 

       } 

 

     audioLoopIndex OBJECT-TYPE 

       SYNTAX INTEGER (0..32) 

       ACCESS read-only 

       STATUS mandatory 

       DESCRIPTION 

           "Table Index" 

       ::= { audioLoopEntry 1 } 

 

     audioSource OBJECT-TYPE 

       SYNTAX INTEGER (0..'FF'h) 

       ACCESS read-write 

       STATUS mandatory 

       DESCRIPTION 

           "Source assignment. (0 indicates silence source) 

           Default value = 0" 

       ::= { audioLoopEntry 2 } 

 

     audioDest OBJECT-TYPE 

       SYNTAX INTEGER (0..'FF'h) 

       ACCESS read-write 



       STATUS mandatory 

       DESCRIPTION 

           "Destination assignment (0 indicates no destination). 

           Default value = 0" 

       ::= { audioLoopEntry 3 } 

END 

Figure 1: Portion of CobraNet MIB in ASN.1 
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ccitt(0) iso(1) joint-iso-ccitt(2) 

dod(6) 

org(3) 

internet(1) 

directory(1) mgmt(2) experimental(3) private(4) 
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system(1) interfaces(2) at(3) ip(4) icmp(5) tcp(6) udp(7) 
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Figure 2: Base SNMP variable hierarchy (MIB-II) 
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Figure 3: SNMP request/response packet 

 



PDU Type Name Direction Usage 

0 GetRequest Manager to agent Requests enumerated variables be 

read. 

1 GetNextRequest Manager to agent Returns OID and values for 

lexicographical successors to 

specified variables. 

2 GetResponse Agent to manger Agent response to GetRequest, 

GetNextRequest and SetRequest. 

Contains current values of 

enumerated variables. 

3 SetRequest Manager to agent Requests enumerated variables be 

written with supplied values. 

4 Trap Agent to manager Sent asynchronously upon 

detection of a triggering event at 

the agent. 

 

Figure 4: SNMP packet PDU Type field values and meanings 

 

Error Status Name Description 

0 NoError All is ok 

1 TooBig Indicates that the response to the request would be too 

large to send back in a single packet. Agents are only 

required to support packets larger than 484 bytes. 

Ethernet may carry packets up to 1500 bytes. Support for 

these larger packets is encouraged. 

2 NoSuchName Indicates that a request referenced an OID which is not 

accessible. 

3 BadValue A set operation specified an invalid value or syntax. 

4 ReadOnly A set operation attempted to modify a read-only variable. 

5 GenErr A catch all error, which may be returned when no other 

recourse is available 

 

Figure 5: Error Status values 
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Figure 6: Trap packet format 

 



Trap Type Name Description 

0 ColdStart Agent is initializing itself. 

1 WarmStart Agent is reinitializing itself. 

2 LinkDown An interface has changed from the up to the down 

state. The first variable in the message identifies the 

interface 

3 LinkUp An interface has changed from the down to the up 

state. The first variable in the message identifies the 

interface 

4 AuthenticationFai-

lure 

A message was received from an SNMP manager 

with an invalid community. 

5 EgpNeighborLoss An EGP peer has changed to the down state. The first 

variable in the message contains the IP address of the 

peer. 

6 EnterpriseSpecific Look in the specific code field for the information on 

the trap. 

 

Figure 7: Trap types 

 

Type Length Value Octet 1 .  .  . Value Octet n 

 
 

Figure 8: BER encoded value 

 

Integer values are represented in two’s-complement. Sign extending the value so that the 

value is expressed as a multiple of 8 bits forms the basis for the encoding for the integer 

value 255. Note that expressing 255 as a two’s compliment value requires 9 bits, the 9
th
 

being the sign bit. 

0  0  0  0  0  0  0  0 1  1  1  1  1  1  1  1 

 
Add the type and length fields to arrive at the final 4 byte encoding. 

0  0  0  0  0  0  0  1 0  0  0  0  0  0  1  0 

0  0  0  0  0  0  0  0 1  1  1  1  1  1  1  1 

Tag Universal 1 Length 2 

Value (1 of 2) Value (2 of 2) 
 

Figure 9: Integer BER example 


