
1	
	

	
	
	
	
	
	

AVDECC	clarifications	
	
Part	1	–	ACMP	
	
Revision	2	
2/25/2016	
	
	

2	
	

1. Introduction	
	

The	goal	of	this	document	is	to	clarify	some	parts	of	the	AVDECC	specification	(IEEE	Std.	1722.1™-2013).	
	

This	document	tries	to	describe	precisely	all	the	fields	of	the	ACMPDU	for	all	the	possible	message	types.	It	also	describes	a	few	scenarios	that	raise	
some	questions	not	precisely	answered	in	the	specification.	
	

This	document	is	open	for	comments	and	proposals.	Please	do	not	hesitate	to	add/discuss/correct	any	point	if	needed.	The	goal	is	to	finally	have	
everybody	agree	so	that	a	manufacturer	releasing	an	AVDECC	device	now	can	be	confident	that	it	will	interoperate	with	any	other	AVDECC	device	that	
will	be	released	in	the	future.	

	
	
	

2. Revision	History	
	
Version	 Description	
1	 Initial	release	of	the	document	

February	19th,	2016	
2	 Updated	the	“ACMP	scenarios”	section	according	to	comments	from	AVnu	members.	

Updated	description	of	the	“stream_dest_mac”	field	of	the	GET_TX_STATE_RESPONSE	and	
GET_TX_CONNECTION_RESPONSE	messages.	
February	25th,	2016	

	
	

	
	

3	
	

Contents	
	
1.	 Introduction	..	2	
2.	 Revision	History	..	2	
3.	 ACMP	PDU	format	...	4	
3.1.	 CONNECT_RX_COMMAND	and	CONNECT_RX_RESPONSE	..	4	
3.2.	 CONNECT_TX_COMMAND	and	CONNECT_TX_RESPONSE	...	7	
3.3.	 DISCONNECT_RX_COMMAND	and	DISCONNECT_RX_RESPONSE	...	10	
3.4.	 DISCONNECT_TX_COMMAND	and	DISCONNECT_TX_RESPONSE	...	12	
3.5.	 GET_RX_STATE_COMMAND	and	GET_RX_STATE_RESPONSE	..	15	
3.6.	 GET_TX_STATE_COMMAND	and	GET_TX_STATE_RESPONSE	...	18	
3.7.	 GET_TX_CONNECTION_COMMAND	and	GET_TX_CONNECTION_RESPONSE	...	21	

4.	 ACMP	scenarios	..	24	
4.1.	 Acquirement/lock	and	connections	–	Listener	refusal	..	24	
4.2.	 Acquirement/lock	and	connections	–	Talker	refusal	..	24	
4.3.	 State	of	the	Listener	during	Fast	Connect	attempt	..	25	
4.4.	 Request	to	stop	Fast	Connect	attempts	...	26	
4.5.	 Connection	succeeded	on	Talker	and	failed	on	Listener	...	27	
4.6.	 Disconnection	succeeded	on	Listener	and	failed	on	Talker	...	28	
4.7.	 Talker	connected	to	a	ghost	Listener	...	29	
4.8.	 ACMP	connection	succeeds	even	if	no	bandwidth	for	the	stream	...	29	
4.9.	 ACMP	connection	fails	because	MAAP	fails	...	30	
4.10.	 MAAP	fails	after	a	successful	ACMP	connection	...	31	
4.11.	 SRP	stream	parameters	different	from	ACMP	stream	parameters	..	32	

	
	
	
	
	
	

4	
	

3. ACMP	PDU	format		
	
Explanation	of	the	background	colours:	

Text	on	white	background:	Behaviour	described	by	the	specification	and	consistent	
Text	on	red	background:	Behaviour	described	by	the	specification,	but	not	consistent	
Text	on	yellow	background:	Proposal	of	modification	of	the	specification	in	order	to	be	consistent	

	
	

3.1. CONNECT_RX_COMMAND	and	CONNECT_RX_RESPONSE	
	
	 CONNECT_RX_COMMAND	 CONNECT_RX_RESPONSE	

(status=SUCCESS)	
CONNECT_RX_RESPONSE	
(status<>SUCCESS)	

controller_entity_id	 Entity	ID	of	the	controller	sending	
the	command	

Copy	“controller_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	

Copy	“controller_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	

talker_entity_id	 Entity	ID	of	the	talker	which	is	
target	of	the	command	

Copy	“talker_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	

Copy	“talker_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	

listener_entity_id	 Entity	ID	of	the	listener	which	is	
target	of	the	command	

Copy	“listener_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	

Copy	“listener_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	

talker_unique_id	 Unique	ID	of	the	Stream	source	
which	is	target	of	the	command	

Copy	“talker_unique_id”	of	the	
CONNECT_RX_COMMAND	
message	

Copy	“talker_unique_id”	of	the	
CONNECT_RX_COMMAND	
message	

listener_unique_id	 Unique	ID	of	the	Stream	sink	
which	is	target	of	the	command	

Copy	“listener_unique_id”	of	the	
CONNECT_RX_COMMAND	
message	

Copy	“listener_unique_id”	of	the	
CONNECT_RX_COMMAND	
message	

stream_id	 00:00:00:00:00:00:00:00	 Copy	“stream_id”	of	the	
CONNECT_TX_RESPONSE	message	

Copy	“stream_id”	of	the	
CONNECT_TX_RESPONSE	message	
(00:00:00:00:00:00:00:00	if	there	
was	no	message	from	the	talker)	

stream_dest_mac	 00:00:00:00:00:00	 Copy	“stream_dest_mac”	of	the	 Copy	“stream_dest_mac”	of	the	

5	
	

CONNECT_TX_RESPONSE	message	 CONNECT_TX_RESPONSE	message	
(00:00:00:00:00:00	if	there	was	
no	message	from	the	talker)	

stream_vlan_id	 0	 Copy	“stream_vlan_id”	of	the	
CONNECT_TX_RESPONSE	message	

Copy	“stream_vlan_id”	of	the	
CONNECT_TX_RESPONSE	message	
(0	if	there	was	no	message	from	
the	talker)	

connection_count	 0	 Copy	“connection_count”	of	the	
CONNECT_TX_RESPONSE	message	

Copy	“connection_count”	of	the	
CONNECT_TX_RESPONSE	message	
(0	if	there	was	no	message	from	
the	talker)	

sequence_id	 changed	by	the	sender	at	each	
new	command	sent	

Copy	“sequence_id”	of	the	
CONNECT_RX_COMMAND	
message	

Copy	“sequence_id”	of	the	
CONNECT_RX_COMMAND	
message	

flags.CLASS_B	 0	 Copy	“flags.CLASS_B”	of	the	
CONNECT_TX_RESPONSE	message	

Copy	“flags.CLASS_B”	of	the	
CONNECT_TX_RESPONSE	message	
(0	if	there	was	no	message	from	
the	talker)	

flags.FAST_CONNECT	 0	 0	 0	
flags.SAVED_STATE	 0	 1	if	the	listener	implements	Fast	

Connect	mode,	0	otherwise		
1	if	the	listener	implements	Fast	
Connect	mode,	0	otherwise	

flags.STREAMING_WAIT	 0	if	the	controller	wants	that	the	
talker	starts	streaming	data	and	
the	listener	starts	playing	these	
data	immediately,	1	otherwise	

Copy	“flags.STREAMING_WAIT”	of	
the	CONNECT_TX_RESPONSE	
message	

Copy	“flags.STREAMING_WAIT”	of	
the	CONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

flags.SUPPORTS_ENCRYPTED	 0	 Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	CONNECT_TX_RESPONSE	
message	

Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	CONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

flags.ENCRYPTED_PDU	 0	 Copy	“flags.ENCRYPTED_PDU”	of	
the	CONNECT_TX_RESPONSE	
message	

Copy	“flags.ENCRYPTED_PDU”	of	
the	CONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

6	
	

flags.TALKER_FAILED	 0	 1	if	the	listener	is	already	
receiving	a	Talker	Failed	attribute	
for	this	stream,	0	otherwise		

0	

Other	bits	of	the	flags	 0	 Copy	other	bits	of	the	flags	of	the	
CONNECT_TX_RESPONSE	message	

Copy	other	bits	of	the	flags	of	the	
CONNECT_TX_RESPONSE	message	

reserved	 0	 0	 0	
	
	
	

7	
	

3.2. CONNECT_TX_COMMAND	and	CONNECT_TX_RESPONSE	
	
	 CONNECT_TX_COMMAND	 CONNECT_TX_RESPONSE	

(status<>TALKER_UNKNOWN_ID)	
CONNECT_TX_RESPONSE	
(status=TALKER_UNKNOWN_ID)	

controller_entity_id	 Copy	“controller_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	(saved	value	from	the	
initial	message	in	case	of	Fast	
Connect	mode)	

Copy	“controller_entity_id”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“controller_entity_id”	of	the	
CONNECT_TX_COMMAND	message	

talker_entity_id	 Copy	“talker_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	(saved	value	from	the	
initial	message	in	case	of	Fast	
Connect	mode)	

Copy	“talker_entity_id”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“talker_entity_id”	of	the	
CONNECT_TX_COMMAND	message	

listener_entity_id	 Copy	“listener_entity_id”	of	the	
CONNECT_RX_COMMAND	
message	(saved	value	from	the	
initial	message	in	case	of	Fast	
Connect	mode)	

Copy	“listener_entity_id”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“listener_entity_id”	of	the	
CONNECT_TX_COMMAND	message	

talker_unique_id	 Copy	“talker_unique_id”	of	the	
CONNECT_RX_COMMAND	
message	(saved	value	from	the	
initial	message	in	case	of	Fast	
Connect	mode)	

Copy	“talker_unique_id”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“talker_unique_id”	of	the	
CONNECT_TX_COMMAND	message	

listener_unique_id	 Copy	“listener_unique_id”	of	the	
CONNECT_RX_COMMAND	
message	(saved	value	from	the	
initial	message	in	case	of	Fast	
Connect	mode)	

Copy	“listener_unique_id”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“listener_unique_id”	of	the	
CONNECT_TX_COMMAND	message	

stream_id	 Copy	“stream_id”	of	the	
CONNECT_RX_COMMAND	
message	
(00:00:00:00:00:00:00:00	in	case	

- If	the	Talker	source	is	
connected	to	at	least	one	
Listener	sink:	ID	of	the	stream	

- Otherwise:	

Copy	“stream_id”	of	the	
CONNECT_TX_COMMAND	message	

8	
	

of	Fast	Connect	mode)	 00:00:00:00:00:00:00:00	
stream_dest_mac	 Copy	“stream_dest_mac”	of	the	

CONNECT_RX_COMMAND	
message	(00:00:00:00:00:00	in	
case	of	Fast	Connect	mode)	

- If	the	Talker	source	is	
connected	to	at	least	one	
Listener	sink:	Destination	
MAC	address	of	the	stream	

- Otherwise:	00:00:00:00:00:00	

Copy	“stream_dest_mac”	of	the	
CONNECT_TX_COMMAND	message	

stream_vlan_id	 Copy	“stream_vlan_id”	of	the	
CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

- If	the	Talker	source	is	
connected	to	at	least	one	
Listener	sink:	VLAN	ID	of	the	
stream	(0	indicates	default	
VLAN	ID	of	the	SRP	domain)	

- Otherwise:	0	

Copy	“stream_vlan_id”	of	the	
CONNECT_TX_COMMAND	message	

connection_count	 Copy	“connection_count”	of	the	
CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

Total	count	of	Listener	sinks	
connected	to	this	stream	source	

Copy	“connection_count”	of	the	
CONNECT_TX_COMMAND	message	

sequence_id	 changed	by	the	sender	at	each	
new	command	sent	

Copy	“sequence_id”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“sequence_id”	of	the	
CONNECT_TX_COMMAND	message	

flags.CLASS_B	 Copy	“flags.CLASS_B”	of	the	
CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

Copy	“flags.CLASS_B”	of	the	
CONNECT_TX_COMMAND	message	
- If	the	Talker	source	is	

connected	to	at	least	one	
Listener	sink:	0	if	the	stream	
is	Class	A,	1	if	the	stream	is	
Class	B	

- Otherwise:	0	

Copy	“flags.CLASS_B”	of	the	
CONNECT_TX_COMMAND	message	

flags.FAST_CONNECT	 Copy	“flags.FAST_CONNECT”	of	
the	CONNECT_RX_COMMAND	
message	(1	in	case	of	Fast	Connect	
mode)	

Copy	“flags.FAST_CONNECT”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“flags.FAST_CONNECT”	of	the	
CONNECT_TX_COMMAND	message	

flags.SAVED_STATE	 Copy	“flags.SAVED_STATE”	of	the	
CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

Copy	“flags.SAVED_STATE”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“flags.SAVED_STATE”	of	the	
CONNECT_TX_COMMAND	message	

9	
	

flags.STREAMING_WAIT	 Copy	“flags.STREAMING_WAIT”	of	
the	CONNECT_RX_COMMAND	
message	(saved	value	from	last	
state	in	case	of	Fast	Connect	
mode)	

Copy	“flags.STREAMING_WAIT”	of	
the	CONNECT_TX_COMMAND	
message	

Copy	“flags.STREAMING_WAIT”	of	
the	CONNECT_TX_COMMAND	
message	

flags.SUPPORTS_ENCRYPTED	 Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

Copy	“flags.SUPPORTS_ENCRYPTED”	
of	the	CONNECT_TX_COMMAND	
message	
1	if	the	talker	supports	encryption	of	
the	PDUs,	0	otherwise	

Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	CONNECT_TX_COMMAND	
message	
	

flags.ENCRYPTED_PDU	 Copy	“flags.ENCRYPTED_PDU”	of	
the	CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

Copy	“flags.ENCRYPTED_PDU”	of	the	
CONNECT_TX_COMMAND	message	
- If	the	Talker	source	is	

connected	to	at	least	one	
Listener	sink:	1	if	the	talker	is	
configured	to	use	encrypted	
PDUs	for	this	stream,	0	
otherwise	

- Otherwise:	0	

Copy	“flags.ENCRYPTED_PDU”	of	
the	CONNECT_TX_COMMAND	
message	
	

flags.TALKER_FAILED	 Copy	“flags.TALKER_FAILED”	of	
the	CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

Copy	“flags.TALKER_FAILED”	of	the	
CONNECT_TX_COMMAND	message	

Copy	“flags.TALKER_FAILED”	of	the	
CONNECT_TX_COMMAND	message	

Other	bits	of	the	flags	 Copy	other	bits	of	the	flags	of	the	
CONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	Connect	
mode)	

Copy	other	bits	of	the	flags	of	the	
CONNECT_TX_COMMAND	message	

Copy	other	bits	of	the	flags	of	the	
CONNECT_TX_COMMAND	message	

reserved	 0	 0	 0	
	
	

10	
	

3.3. DISCONNECT_RX_COMMAND	and	DISCONNECT_RX_RESPONSE	
	
	 DISCONNECT_RX_COMMAND	 DISCONNECT_RX_RESPONSE	

(status=SUCCESS)	
DISCONNECT_RX_RESPONSE	
(status<>SUCCESS)	

controller_entity_id	 Entity	ID	of	the	controller	sending	
the	command	

Copy	“controller_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

Copy	“controller_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

talker_entity_id	 Entity	ID	of	the	talker	which	is	
target	of	the	command	

Copy	“talker_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

Copy	“talker_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

listener_entity_id	 Entity	ID	of	the	listener	which	is	
target	of	the	command	

Copy	“listener_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

Copy	“listener_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

talker_unique_id	 Unique	ID	of	the	Stream	source	
which	is	target	of	the	command	

Copy	“talker_unique_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

Copy	“talker_unique_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

listener_unique_id	 Unique	ID	of	the	Stream	sink	
which	is	target	of	the	command	

Copy	“listener_unique_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

Copy	“listener_unique_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

stream_id	 00:00:00:00:00:00:00:00	 Copy	“stream_id”	of	the	
DISCONNECT_TX_RESPONSE	
message	

Copy	“stream_id”	of	the	
DISCONNECT_TX_RESPONSE	
message	
(00:00:00:00:00:00:00:00	if	there	
was	no	message	from	the	talker)	

stream_dest_mac	 00:00:00:00:00:00	 Copy	“stream_dest_mac”	of	the	
DISCONNECT_TX_RESPONSE	
message	

Copy	“stream_dest_mac”	of	the	
DISCONNECT_TX_RESPONSE	
message	(00:00:00:00:00:00	if	
there	was	no	message	from	the	
talker)	

stream_vlan_id	 0	 Copy	“stream_vlan_id”	of	the	
DISCONNECT_TX_RESPONSE	
message	

Copy	“stream_vlan_id”	of	the	
DISCONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

11	
	

connection_count	 0	 Copy	“connection_count”	of	the	
DISCONNECT_TX_RESPONSE	
message	

Copy	“connection_count”	of	the	
DISCONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

sequence_id	 changed	by	the	sender	at	each	
new	command	sent	

Copy	“sequence_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

Copy	“sequence_id”	of	the	
DISCONNECT_RX_COMMAND	
message	

flags.CLASS_B	 0	 Copy	“flags.CLASS_B”	of	the	
DISCONNECT_TX_RESPONSE	
message	

Copy	“flags.CLASS_B”	of	the	
DISCONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

flags.FAST_CONNECT	 0	 0	 0	
flags.SAVED_STATE	 0	 1	if	the	listener	implements	Fast	

Connect	mode,	0	otherwise		
1	if	the	listener	implements	Fast	
Connect	mode,	0	otherwise	

flags.STREAMING_WAIT	 0	 Copy	“flags.STREAMING_WAIT”	of	
the	DISCONNECT_TX_RESPONSE	
message	

Copy	“flags.STREAMING_WAIT”	of	
the	DISCONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

flags.SUPPORTS_ENCRYPTED	 0	 Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	DISCONNECT_TX_RESPONSE	
message	

Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	DISCONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

flags.ENCRYPTED_PDU	 0	 Copy	“flags.ENCRYPTED_PDU”	of	
the	DISCONNECT_TX_RESPONSE	
message	

Copy	“flags.ENCRYPTED_PDU”	of	
the	DISCONNECT_TX_RESPONSE	
message	(0	if	there	was	no	
message	from	the	talker)	

flags.TALKER_FAILED	 0	 0		 0	
Other	bits	of	the	flags	 0	 Copy	other	bits	of	the	flags	of	the	

DISCONNECT_TX_RESPONSE	
message	

Copy	other	bits	of	the	flags	of	the	
DISCONNECT_TX_RESPONSE	
message	

reserved	 0	 0	 0	

12	
	

3.4. DISCONNECT_TX_COMMAND	and	DISCONNECT_TX_RESPONSE	
	
	 DISCONNECT_TX_COMMAND	 DISCONNECT_TX_RESPONSE	

(status<>TALKER_UNKNOWN_ID)	
DISCONNECT_TX_RESPONSE	
(status=TALKER_UNKNOWN_ID)	

controller_entity_id	 Copy	“controller_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	(saved	value	from	the	
current	connection	in	case	of	Fast	
Disconnect	mode)	

Copy	“controller_entity_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“controller_entity_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

talker_entity_id	 Copy	“talker_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	(saved	value	from	the	
current	connection	in	case	of	Fast	
Disconnect	mode)	

Copy	“talker_entity_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“talker_entity_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

listener_entity_id	 Copy	“listener_entity_id”	of	the	
DISCONNECT_RX_COMMAND	
message	(saved	value	from	the	
current	connection	in	case	of	Fast	
Disconnect	mode)	

Copy	“listener_entity_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“listener_entity_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

talker_unique_id	 Copy	“talker_unique_id”	of	the	
DISCONNECT_RX_COMMAND	
message	(saved	value	from	the	
current	connection	in	case	of	Fast	
Disconnect	mode)	

Copy	“talker_unique_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“talker_unique_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

listener_unique_id	 Copy	“listener_unique_id”	of	the	
DISCONNECT_RX_COMMAND	
message	(saved	value	from	the	
current	connection	in	case	of	Fast	
Disconnect	mode)	

Copy	“listener_unique_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“listener_unique_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

stream_id	 Copy	“stream_id”	of	the	
DISCONNECT_RX_COMMAND	
message	
(00:00:00:00:00:00:00:00	in	case	

- If	the	Talker	source	is	still	
connected	to	at	least	one	
Listener	sink:	ID	of	the	stream	

- Otherwise:	

Copy	“stream_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

13	
	

of	Fast	Disconnect	mode)	 00:00:00:00:00:00:00:00	
stream_dest_mac	 Copy	“stream_dest_mac”	of	the	

DISCONNECT_RX_COMMAND	
message	(00:00:00:00:00:00	in	
case	of	Fast	Disconnect	mode)	

- If	the	Talker	source	is	still	
connected	to	at	least	one	
Listener	sink:	Destination	
MAC	address	of	the	stream	

- Otherwise:	00:00:00:00:00:00	

Copy	“stream_dest_mac”	of	the	
DISCONNECT_TX_COMMAND	
message	

stream_vlan_id	 Copy	“stream_vlan_id”	of	the	
DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	
Disconnect	mode)	

- If	the	Talker	source	is	still	
connected	to	at	least	one	
Listener	sink:	VLAN	ID	of	the	
stream	(0	indicates	default	
VLAN	ID	of	the	SRP	domain)	

- Otherwise:	0	

Copy	“stream_vlan_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

connection_count	 Copy	“connection_count”	of	the	
DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	
Disconnect	mode)	

Total	count	of	Listener	sinks	
connected	to	this	stream	source	

Copy	“connection_count”	of	the	
DISCONNECT_TX_COMMAND	
message	

sequence_id	 changed	by	the	sender	at	each	
new	command	sent	

Copy	“sequence_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“sequence_id”	of	the	
DISCONNECT_TX_COMMAND	
message	

flags.CLASS_B	 Copy	“flags.CLASS_B”	of	the	
DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	
Disconnect	mode)	

Copy	“flags.CLASS_B”	of	the	
CONNECT_TX_COMMAND	message	
- If	the	Talker	source	is	still	

connected	to	at	least	one	
Listener	sink:	0	if	the	stream	
is	Class	A,	1	if	the	stream	is	
Class	B	

Otherwise:	0	

Copy	“flags.CLASS_B”	of	the	
DISCONNECT_TX_COMMAND	
message	

flags.FAST_CONNECT	 Copy	“flags.FAST_CONNECT”	of	
the	DISCONNECT_RX_COMMAND	
message	(1	in	case	of	Fast	
Disconnect	mode)	

Copy	“flags.FAST_CONNECT”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“flags.FAST_CONNECT”	of	the	
DISCONNECT_TX_COMMAND	
message	

flags.SAVED_STATE	 Copy	“flags.SAVED_STATE”	of	the	
DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	

Copy	“flags.SAVED_STATE”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“flags.SAVED_STATE”	of	the	
DISCONNECT_TX_COMMAND	
message	

14	
	

Disconnect	mode)	
flags.STREAMING_WAIT	 Copy	“flags.STREAMING_WAIT”	of	

the	DISCONNECT_RX_COMMAND	
message	(saved	value	from	last	
state	in	case	of	Fast	Disconnect	
mode)	

Copy	“flags.STREAMING_WAIT”	of	
the	DISCONNECT_TX_COMMAND	
message	

Copy	“flags.STREAMING_WAIT”	of	
the	DISCONNECT_TX_COMMAND	
message	

flags.SUPPORTS_ENCRYPTED	 Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	
Disconnect	mode)	

Copy	“flags.SUPPORTS_ENCRYPTED”	
of	the	DISCONNECT_TX_COMMAND	
message	
1	if	the	talker	supports	encryption	of	
the	PDUs,	0	otherwise	

Copy	
“flags.SUPPORTS_ENCRYPTED”	of	
the	DISCONNECT_TX_COMMAND	
message	
	

flags.ENCRYPTED_PDU	 Copy	“flags.ENCRYPTED_PDU”	of	
the	DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	
Disconnect	mode)	

Copy	“flags.ENCRYPTED_PDU”	of	the	
DISCONNECT_TX_COMMAND	
message	
- If	the	Talker	source	is	still	

connected	to	at	least	one	
Listener	sink:	1	if	the	talker	is	
configured	to	use	encrypted	
PDUs	for	this	stream,	0	
otherwise	

- Otherwise:	0	

Copy	“flags.ENCRYPTED_PDU”	of	
the	DISCONNECT_TX_COMMAND	
message	
	

flags.TALKER_FAILED	 Copy	“flags.TALKER_FAILED”	of	
the	DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	
Disconnect	mode)	

Copy	“flags.TALKER_FAILED”	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	“flags.TALKER_FAILED”	of	the	
DISCONNECT_TX_COMMAND	
message	

Other	bits	of	the	flags	 Copy	other	bits	of	the	flags	of	the	
DISCONNECT_RX_COMMAND	
message	(0	in	case	of	Fast	
Disconnect	mode)	

Copy	other	bits	of	the	flags	of	the	
DISCONNECT_TX_COMMAND	
message	

Copy	other	bits	of	the	flags	of	the	
DISCONNECT_TX_COMMAND	
message	

reserved	 0	 0	 0	
	
	
	

15	
	

3.5. GET_RX_STATE_COMMAND	and	GET_RX_STATE_RESPONSE	
	
	 GET_RX_STATE_COMMAND	 GET_RX_STATE_RESPONSE	

(status=SUCCESS)	
GET_RX_STATE_RESPONSE	
(status<>SUCCESS)	

controller_entity_id	 Entity	ID	of	the	controller	sending	
the	command	

Copy	“controller_entity_id”	of	the	
GET_RX_STATE_COMMAND	
message	

Copy	“controller_entity_id”	of	the	
GET_RX_STATE_COMMAND	
message	

talker_entity_id	 00:00:00:00:00:00:00:00	 - If	the	Stream	sink	is	
connected	to	a	Talker	
source:		Entity	ID	of	the	
talker	

- If	not	connected:	
00:00:00:00:00:00:00:00	

00:00:00:00:00:00:00:00	

listener_entity_id	 Entity	ID	of	the	listener	which	is	
target	of	the	command	

Copy	“listener_entity_id”	of	the	
GET_RX_STATE_COMMAND	
message	

Copy	“listener_entity_id”	of	the	
GET_RX_STATE_COMMAND	
message	

talker_unique_id	 0	 - If	the	Stream	sink	is	
connected	to	a	Talker	
source:	Unique	ID	of	the	
talker	source	

- If	not	connected:	0	

0	

listener_unique_id	 Unique	ID	of	the	Stream	sink	
which	is	target	of	the	command	

Copy	“listener_unique_id”	of	the	
GET_RX_STATE	_COMMAND	
message	

Copy	“listener_unique_id”	of	the	
GET_RX_STATE	_COMMAND	
message	

stream_id	 00:00:00:00:00:00:00:00	 - If	the	Stream	sink	is	
connected	to	a	Talker	
source:		ID	of	the	stream	

- If	not	connected:	
00:00:00:00:00:00:00:00	

00:00:00:00:00:00:00:00	

stream_dest_mac	 00:00:00:00:00:00	 - If	the	Stream	sink	is	
connected	to	a	Talker	
source:		Destination	MAC	

00:00:00:00:00:00	

16	
	

address	of	the	stream	
- If	not	connected:	

00:00:00:00:00:00	
stream_vlan_id	 0	 - If	the	Stream	sink	is	

connected	to	a	Talker	
source:	VLAN	ID	of	the	
stream	(0	indicates	default	
VLAN	ID	of	the	SRP	
domain)	

- If	not	connected:	0	

0	

connection_count	 0	 Number	of	Listener	sinks	
connected	to	this	Talker	source	
1	if	the	Stream	sink	is	connected	
to	a	Talker	source,	0	otherwise	

0	

sequence_id	 changed	by	the	sender	at	each	
new	command	sent	

Copy	“sequence_id”	of	the	
GET_RX_STATE_COMMAND	
message	

Copy	“sequence_id”	of	the	
GET_RX_STATE_COMMAND	
message	

flags.CLASS_B	 0	 - If	the	Stream	sink	is	
connected	to	a	Talker	
source	:	0	if	the	stream	is	
Class	A,	1	if	the	stream	is	
Class	B	

- If	not	connected:	0	

0	

flags.FAST_CONNECT	 0	 0	 0	
flags.SAVED_STATE	 0	 1	if	the	listener	implements	Fast	

Connect	mode,	0	otherwise	
0	

flags.STREAMING_WAIT	 0	 0	 0	
flags.SUPPORTS_ENCRYPTED	 0	 0	 0	
flags.ENCRYPTED_PDU	 0	 - If	the	Stream	sink	is	

connected	to	a	Talker	
source	:	1	if	the	stream	is	
encrypted,	0	otherwise	

- If	not	connected:	0	

0	

17	
	

flags.TALKER_FAILED	 0	 - If	the	Stream	sink	is	
connected	to	a	Talker	
source	:	1	if	the	listener	is	
receiving	a	Talker	Failed	
attribute	for	this	stream,	0	
otherwise	

- If	not	connected:	0	

0	

Other	bits	of	the	flags	 0	 0	 0	
reserved	 0	 0	 0	

	

18	
	

3.6. GET_TX_STATE_COMMAND	and	GET_TX_STATE_RESPONSE	
	
	 GET_TX_STATE_COMMAND	 GET_TX_STATE_RESPONSE	

(status<>TALKER_UNKNOWN_ID)	
GET_TX_STATE_RESPONSE	
(status=TALKER_UNKNOWN_ID)	

controller_entity_id	 Entity	ID	of	the	controller	sending	
the	command	

Copy	“controller_entity_id”	of	the	
GET_TX_STATE_COMMAND	message	

Copy	“controller_entity_id”	of	the	
GET_TX_STATE_COMMAND	
message	

talker_entity_id	 Entity	ID	of	the	talker	which	is	
target	of	the	command	

Copy	“talker_entity_id”	of	the	
GET_TX_STATE_COMMAND	message	

Copy	“talker_entity_id”	of	the	
GET_TX_STATE_COMMAND	
message	

listener_entity_id	 00:00:00:00:00:00:00:00	 Copy	“listener_entity_id”	of	the	
GET_TX_STATE	_COMMAND	message	

Copy	“listener_entity_id”	of	the	
GET_TX_STATE	_COMMAND	
message	

talker_unique_id	 Unique	ID	of	the	Stream	source	
which	is	target	of	the	command	

Copy	“talker_unique_id”	of	the	
GET_TX_STATE	_COMMAND	message	

Copy	“talker_unique_id”	of	the	
GET_TX_STATE_COMMAND	
message	

listener_unique_id	 0	 Copy	“listener_unique_id”	of	the	
GET_TX_STATE	_COMMAND	message	

Copy	“listener_unique_id”	of	the	
GET_TX_STATE	_COMMAND	
message	

stream_id	 00:00:00:00:00:00:00:00	 - If	the	Stream	source	is	
connected	to	at	least	one	
Listener	sink:		ID	of	the	
stream	

- If	not	connected:	
00:00:00:00:00:00:00:00	

Copy	“stream_id”	of	the	
GET_TX_STATE	_COMMAND	
message	

stream_dest_mac	 00:00:00:00:00:00	 - If	the	Stream	source	is	
connected	to	at	least	one	
Listener	sink:		Destination	
MAC	address	of	the	stream	
(00:00:00:00:00:00	if	the	
MAAP	range	previously	
allocated	by	the	Talker	has	
been	lost	and	a	new	range	has	

Copy	“stream_dest_mac”	of	the	
GET_TX_STATE	_COMMAND	
message	

19	
	

not	been	allocated	yet)	
- If	not	connected:	

00:00:00:00:00:00	
stream_vlan_id	 0	 - If	the	Stream	source	is	

connected	to	at	least	one	
Listener	sink:	VLAN	ID	of	the	
stream	(0	indicates	default	
VLAN	ID	of	the	SRP	domain)	

- If	not	connected:	0	

Copy	“stream_vlan_id”	of	the	
GET_TX_STATE	_COMMAND	
message	

connection_count	 0	 Number	of	Listener	sinks	connected	
to	this	Talker	source	

Copy	“connection_count”	of	the	
GET_TX_STATE	_COMMAND	
message	

sequence_id	 changed	by	the	sender	at	each	
new	command	sent	

Copy	“sequence_id”	of	the	
GET_TX_STATE_COMMAND	message	

Copy	“sequence_id”	of	the	
GET_TX_STATE_COMMAND	
message	

flags.CLASS_B	 0	 Copy	“flags.CLASS_B”	of	the	
GET_TX_STATE_COMMAND	message	
- If	the	Talker	source	is	

connected	to	at	least	one	
Listener	sink:	0	if	the	stream	
is	Class	A,	1	if	the	stream	is	
Class	B	

- Otherwise:	0	

Copy	“flags.CLASS_B”	of	the	
GET_TX_STATE_COMMAND	
message	

flags.FAST_CONNECT	 0	 Copy	“flags.FAST_CONNECT”	of	the	
GET_TX_STATE_COMMAND	message	

Copy	“flags.FAST_CONNECT”	of	the	
GET_TX_STATE_COMMAND	
message	

flags.SAVED_STATE	 0	 Copy	“flags.SAVED_STATE”	of	the	
GET_TX_STATE_COMMAND	message	

Copy	“flags.SAVED_STATE”	of	the	
GET_TX_STATE_COMMAND	
message	

flags.STREAMING_WAIT	 0	 Copy	“flags.STREAMING_WAIT”	of	
the	GET_TX_STATE_COMMAND	
message	

Copy	“flags.STREAMING_WAIT”	of	
the	GET_TX_STATE_COMMAND	
message	

flags.SUPPORTS_ENCRYPTED	 0	 Copy	“flags.SUPPORTS_ENCRYPTED”	
of	the	GET_TX_STATE_COMMAND	

Copy	
“flags.SUPPORTS_ENCRYPTED”	of	

20	
	

message	
1	if	the	talker	supports	encryption	of	
the	PDUs,	0	otherwise	

the	GET_TX_STATE_COMMAND	
message	
	

flags.ENCRYPTED_PDU	 0	 Copy	“flags.ENCRYPTED_PDU”	of	the	
GET_TX_STATE_COMMAND	message	
- If	the	Talker	source	is	

connected	to	at	least	one	
Listener	sink:	1	if	the	talker	is	
configured	to	use	encrypted	
PDUs	for	this	stream,	0	
otherwise	

- Otherwise:	0	

Copy	“flags.ENCRYPTED_PDU”	of	
the	GET_TX_STATE_COMMAND	
message	
	

flags.TALKER_FAILED	 0	 Copy	“flags.TALKER_FAILED”	of	the	
GET_TX_STATE_COMMAND	message	

Copy	“flags.TALKER_FAILED”	of	the	
GET_TX_STATE_COMMAND	
message	

Other	bits	of	the	flags	 0	 Copy	other	bits	of	the	flags	of	the	
GET_TX_STATE_COMMAND	message	

Copy	other	bits	of	the	flags	of	the	
GET_TX_STATE_COMMAND	
message	

reserved	 0	 0	 0	
	

		

21	
	

3.7. GET_TX_CONNECTION_COMMAND	and	GET_TX_CONNECTION_RESPONSE	
	
	 GET_TX_CONNECTION_COMMAND	 GET_TX_CONNECTION_RESPONSE	

(status<>TALKER_UNKNOWN_ID)	
GET_TX_	CONNECTION	_RESPONSE	
(status=TALKER_UNKNOWN_ID)	

controller_entity_id	 Entity	ID	of	the	controller	sending	
the	command	

Copy	“controller_entity_id”	of	the	
GET_TX_CONNECTION_COMMAND	
message	

Copy	“controller_entity_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

talker_entity_id	 Entity	ID	of	the	talker	which	is	target	
of	the	command	

Copy	“talker_entity_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

Copy	“talker_entity_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

listener_entity_id	 00:00:00:00:00:00:00:00	 Entity	ID	of	the	connected	Listener	
(00:00:00:00:00:00:00:00	if	
status=NO_SUCH_CONNECTION)	

Copy	“listener_entity_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

talker_unique_id	 Unique	ID	of	the	Stream	source	
which	is	target	of	the	command	

Copy	“talker_unique_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

Copy	“talker_unique_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

listener_unique_id	 0	 Unique	ID	of	the	connected	Listener	
sink	(0	if	
status=NO_SUCH_CONNECTION)	

Copy	“listener_unique_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

stream_id	 00:00:00:00:00:00:00:00	 - If	the	Stream	source	is	
connected	to	at	least	one	
Listener	sink:		ID	of	the	
stream	

- If	not	connected:	
00:00:00:00:00:00:00:00	

Copy	“stream_id”	of	the	GET_TX_	
CONNECTION	_COMMAND	message	

stream_dest_mac	 00:00:00:00:00:00	 - If	the	Stream	source	is	
connected	to	at	least	one	
Listener	sink:		Destination	
MAC	address	of	the	stream	
(00:00:00:00:00:00	if	the	
MAAP	range	previously	
allocated	by	the	Talker	has	
been	lost	and	a	new	range	has	

Copy	“stream_dest_mac”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

22	
	

not	been	allocated	yet)	
- If	not	connected:	

00:00:00:00:00:00	
stream_vlan_id	 0	 - If	the	Stream	source	is	

connected	to	at	least	one	
Listener	sink:	VLAN	ID	of	the	
stream	(0	indicates	default	
VLAN	ID	of	the	SRP	domain)	

- If	not	connected:	0	

Copy	“stream_vlan_id”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

connection_count	 Index	of	the	connection	which	is	
target	of	the	command	(the	first	
connection	of	the	list	has	index	0)	

Number	of	Listener	sinks	connected	
to	this	Talker	source	

Copy	“connection_count”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

sequence_id	 changed	by	the	sender	at	each	new	
command	sent	

Copy	“sequence_id”	of	the	GET_TX_	
CONNECTION	_COMMAND	message	

Copy	“sequence_id”	of	the	GET_TX_	
CONNECTION	_COMMAND	message	

flags.CLASS_B	 0	 Copy	“flags.CLASS_B”	of	the	
GET_TX_CONNECTION_COMMAND	
message	
- If	the	Talker	source	is	

connected	to	at	least	one	
Listener	sink:	0	if	the	stream	
is	Class	A,	1	if	the	stream	is	
Class	B	

- Otherwise:	0	

Copy	“flags.CLASS_B”	of	the	GET_TX_	
CONNECTION	_COMMAND	message	

flags.FAST_CONNECT	 0	 Copy	“flags.FAST_CONNECT”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

Copy	“flags.FAST_CONNECT”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

flags.SAVED_STATE	 0	 Copy	“flags.SAVED_STATE”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

Copy	“flags.SAVED_STATE”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

flags.STREAMING_WAIT	 0	 Copy	“flags.STREAMING_WAIT”	of	
the	GET_TX_	CONNECTION	
_COMMAND	message	

Copy	“flags.STREAMING_WAIT”	of	
the	GET_TX_	CONNECTION	
_COMMAND	message	

flags.SUPPORTS_ENCRYPTED	 0	 Copy	“flags.SUPPORTS_ENCRYPTED”	
of	the	

Copy	“flags.SUPPORTS_ENCRYPTED”	
of	the	GET_TX_	CONNECTION	

23	
	

GET_TX_CONNECTION_COMMAND	
message	
1	if	the	talker	supports	encryption	of	
the	PDUs,	0	otherwise	

_COMMAND	message	
	

flags.ENCRYPTED_PDU	 0	 Copy	“flags.ENCRYPTED_PDU”	of	the	
GET_TX_CONNECTION_COMMAND	
message	
- If	the	Talker	source	is	

connected	to	at	least	one	
Listener	sink:	1	if	the	talker	is	
configured	to	use	encrypted	
PDUs	for	this	stream,	0	
otherwise	

- Otherwise:	0	

Copy	“flags.ENCRYPTED_PDU”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	
	

flags.TALKER_FAILED	 0	 Copy	“flags.TALKER_FAILED”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

Copy	“flags.TALKER_FAILED”	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

Other	bits	of	the	flags	 0	 Copy	other	bits	of	the	flags	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

Copy	other	bits	of	the	flags	of	the	
GET_TX_	CONNECTION	_COMMAND	
message	

reserved	 0	 0	 0	
	
	
	
	

24	
	

4. ACMP	scenarios		

4.1. Acquirement/lock	and	connections	–	Listener	refusal	
	
In	this	scenario,	there	are	4	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- Two	controllers:	Controller1	and	Controller2	

	
The	goal	of	this	scenario	is	to	show	that	a	listener	shall	refuse	a	connection/disconnection	request	from	a	controller	if	it	has	been	acquired/locked	by	
another	controller.	
	

1) Controller1	acquires	or	locks	successfully	one	or	several	STREAM_INPUT	descriptor(s)	of	Listener	through	AECP	
2) Controller2	sends	CONNECT_RX_COMMAND	with	listener_entity_id		equal	to	the	Entity	ID	of	Listener	and	listener_unique_id	equal	to	the	

index	of	one	of	the	STREAM_INPUT	descriptors	acquired/locked	by	Controller1		
3) Listener	refuses	the	request	and	replies	immediately	CONNECT_RX_RESPONSE	with	status=CONTROLLER_NOT_AUTHORIZED	(Listener	

doesn’t	even	send	CONNECT_TX_COMMAND	to	Talker)	
	
Notes:	
- In	order	to	acquire/lock	a	STREAM_INPUT	descriptor,	Controller1	may	either	acquire/lock	the	STREAM_INPUT	descriptor	only,	or	the	

AUDIO_UNIT	descriptor	associated	to	this	STREAM_INPUT	descriptor,	or	the	ENTITY	descriptor.	
- If	Controller1	has	acquired/locked	a	subtree	of	Listener’s	AEM	model	which	doesn’t	contain	the	STREAM_INPUT	descriptor	targeted	by	the	

CONNECT_RX_COMMAND,	Listener	shall	not	refuse	the	request.	
- This	behaviour	should	be	agreed	and	implemented	by	every	listener.	Otherwise,	strange	behaviours	may	appear	when	the	talker	implements	it	

but	not	the	listener	for	example.	
	

4.2. Acquirement/lock	and	connections	–	Talker	refusal	
	
In	this	scenario,	there	are	4	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	

25	
	

- Two	controllers:	Controller1	and	Controller2	
	
The	goal	of	this	scenario	is	to	show	that	a	talker	shall	refuse	a	connection/disconnection	request	from	a	controller	if	it	has	been	acquired/locked	by	
another	controller.	
	

1) Controller1	acquires/locks	successfully	one	or	several	STREAM_OUTPUT	descriptor(s)	of	Talker	through	AECP	
2) Controller2	sends	CONNECT_RX_COMMAND	to	Listener	with	talker_entity_id		equal	to	the	Entity	ID	of	Talker	and	talker_unique_id	equal	to	

the	index	of	one	of	the	STREAM_OUTPUT	descriptors	acquired/locked	by	Controller1		
3) Listener	sends	CONNECT_TX_COMMAND	to	Talker	
4) Talker	refuses	the	request	and	replies	CONNECT_TX_RESPONSE	with	status=CONTROLLER_NOT_AUTHORIZED	
5) Listener	receives	CONNECT_TX_RESPONSE	with	status=CONTROLLER_NOT_AUTHORIZED	
6) Listener	doesn’t	connect	and	sends	CONNECT_RX_RESPONSE	with	status=CONTROLLER_NOT_AUTHORIZED	

	
Notes:	
- In	order	to	acquire/lock	a	STREAM_OUTPUT	descriptor,	Controller1	may	either	acquire/lock	the	STREAM_OUTPUT	descriptor	only,	or	the	

AUDIO_UNIT	descriptor	associated	to	this	STREAM_OUTPUT	descriptor,	or	the	ENTITY	descriptor.	
- If	Controller1	has	acquired/locked	a	subtree	of	Talker’s	AEM	model	which	doesn’t	contain	the	STREAM_OUTPUT	descriptor	targeted	by	the	

CONNECT_TX_COMMAND,	Talker	shall	not	refuse	the	request.	
	

4.3. State	of	the	Listener	during	Fast	Connect	attempt	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener	which	implements	the	Fast	Connect	mode:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	a	Listener	performing	a	Fast	Connect	shall	advertise	to	the	controller	that	it	is	not	connected.	
	

1) Controller	successfully	establishes	a	connection	between	Talker	and	Listener	
2) Power	is	switched	off	(every	device	shuts	down)	
3) Talker	is	removed	from	the	network	
4) Later,	power	is	switched	on	again	
5) Listener	reboots	and	sends	some	CONNECT_TX_COMMAND	messages	to	Talker	with	flags.FAST_CONNECT=1	

26	
	

6) During	this	time,	Controller	sends	GET_RX_STATE_COMMAND	to	Listener	
7) Listener	replies	GET_RX_STATE_RESPONSE	with	connection_count=0	and	flags.FAST_CONNECT=0	

	
Note:	there	are	two	ways	for	the	controller	to	know	that	the	listener	is	currently	attempting	to	connect	in	Fast	Connect	mode:	
- Either	sniff	the	CONNECT_TX_COMMAND	messages	on	the	network	and	see	that	flags.FAST_CONNECT	is	set.	This	is	the	best	way	to	do	

because	the	CONNECT_TX_COMMAND	message	contains	the	Entity	IDs	of	both	the	listener	and	the	talker,	and	it	also	contains	the	Unique	IDs	of	
the	sink	and	the	source.	

- Either	send	a	GET_STREAM_INFO	command	to	the	listener.	The	listener	will	set	flags.CONNECTED=0	and	flags.FAST_CONNECT=1.	The	
drawback	of	this	method	is	that	the	controller	doesn’t	have	any	information	about	the	talker	source	to	which	the	listener	is	trying	to	connect	to.	

	

4.4. Request	to	stop	Fast	Connect	attempts	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener	which	implements	the	Fast	Connect	mode:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	how	a	Controller	can	ask	a	Listener	to	stop	attempting	to	connect	in	Fast	Connect	mode.	
	

1) Controller	successfully	establishes	a	connection	between	Talker	and	Listener	
2) Power	is	switched	off	(every	device	shuts	down)	
3) Talker	is	removed	from	the	network	
4) Later,	power	is	switched	on	again	
5) Listener	reboots	and	sends	some	CONNECT_TX_COMMAND	messages	to	Talker	with	flags.FAST_CONNECT=1	
6) During	this	time,	Controller	sends	DISCONNECT_RX_COMMAND	to	Listener	
7) Listener	receives	DISCONNECT_RX_COMMAND	
8) Listener	stops	attempting	to	connect	in	Fast	Connect	mode	
9) Listener	replies	DISCONNECT_RX_RESPONSE	with	status=NOT_CONNECTED	

	
	
Note:	there	is	no	way	for	the	controller	to	globally	disable	the	Fast	Connect	feature	of	a	listener.	A	listener	implementing	Fast	Connect	and	which	is	
rebooted	without	being	cleanly	disconnected	will	always	try	to	connect	in	Fast	Connect	mode	(until	the	controller	sends	a	
DISCONNECT_RX_COMMAND	message).	

27	
	

	

4.5. Connection	succeeded	on	Talker	and	failed	on	Listener	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	the	controller	shall	always	request	the	state	of	the	entities	after	a	connection	failure.	
	

1) Controller	sends	CONNECT_RX_COMMAND	to	Listener	
2) Listener	receives	CONNECT_RX_COMMAND	
3) Listener	sends	CONNECT_TX_COMMAND	to	Talker	
4) Talker	receives	CONNECT_TX_COMMAND	
5) Talker	executes	successfully	the	“connectTalker”	function	
6) Talker	sends	CONNECT_TX_RESPONSE	with	status=SUCCESS	
7) Listener	receives	CONNECT_TX_RESPONSE	with	status=SUCCESS	
8) Listener	executes	the	“connectListener”	function	and	it	fails	for	any	reason	(it	returns	status<>SUCCESS)	
9) Listener	sends	CONNECT_RX_RESPONSE	with	status<>SUCCESS	
10) Controller	receives	CONNECT_RX_RESPONSE	with	status<>SUCCESS	
11) Controller	gets	the	state	of	Listener	thanks	to	a	GET_RX_STATE_COMMAND/GET_RX_STATE_RESPONSE	exchange	
12) Controller	gets	the	state	of	Talker	thanks	to	a	GET_TX_STATE_COMMAND/GET_TX_STATE_RESPONSE	+	some	

GET_TX_CONNECTION_COMMAND/GET_TX_CONNECTION_RESPONSE	exchanges	
13) Controller	notices	that	the	connection	failed	on	Listener	and	tries	again	sending	a	CONNECT_RX_COMMAND	to	Listener	

	
Note:	if	the	listener	continuously	fails	to	establish	the	connection,	it	will	be	impossible	to	disconnect	the	talker.	Indeed,	the	controller	cannot	send	
directly	a	DISCONNECT_TX_COMMAND	to	the	talker,	and	it’s	no	use	to	send	a	DISCONNECT_RX_COMMAND	to	the	listener	because	it	will	always	
reply	with	status=NOT_CONNECTED	without	even	trying	to	send	a	DISCONNECT_TX_COMMAND	to	the	talker.	
	
Note2:	it	would	be	nice	if	the	listener	could	handle	this	case	by	itself,	this	means	automatically	send	a	DISCONNECT_TX_COMMAND	to	the	talker	
when	the	“connectListener”	function	fails	(in	addition	to	sending	the	CONNECT_RX_RESPONSE	with	status<>SUCCESS	to	the	controller).	
Unfortunately	a	listener	behaving	this	way	is	not	conform	to	the	ACMP	Listener	state	machine	specified	in	IEEE	1722.1-2013.	
	

28	
	

4.6. Disconnection	succeeded	on	Listener	and	failed	on	Talker	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	the	controller	shall	always	request	the	state	of	the	entities	after	a	disconnection	failure.	
	

1) Controller	sends	DISCONNECT_RX_COMMAND	to	Listener	
2) Listener	receives	DISCONNECT_RX_COMMAND	
3) Listener	executes	successfully	the	“disconnectListener”	function	
4) Listener	sends	DISCONNECT_TX_COMMAND	to	Talker	
5) Talker	receives	DISCONNECT_TX_COMMAND	
6) Talker	executes	the	“disconnectTalker”	function	and	it	fails	for	any	reason	(it	returns	status<>SUCCESS)	
7) Talker	sends	DISCONNECT_TX_RESPONSE	with	status<>SUCCESS	
8) Listener	receives	DISCONNECT_TX_RESPONSE	with	status<>SUCCESS	
9) Listener	sends	DISCONNECT_RX_RESPONSE	with	status<>SUCCESS	
10) Controller	receives	DISCONNECT_RX_RESPONSE	with	status<>SUCCESS	
11) Controller	gets	the	state	of	Listener	thanks	to	a	GET_RX_STATE_COMMAND/GET_RX_STATE_RESPONSE	exchange	
12) Controller	gets	the	state	of	Talker	thanks	to	a	GET_TX_STATE_COMMAND/GET_TX_STATE_RESPONSE	+	some	

GET_TX_CONNECTION_COMMAND/GET_TX_CONNECTION_RESPONSE	exchanges	
13) Controller	notices	that	the	disconnection	failed	on	Talker	and	tries	to	reconnect	Listener	with	a	CONNECT_RX_COMMAND.	Once	Listener	will	be	

connected	again,	Controller	will	be	able	to	try	again	a	clean	disconnection	
	
	
Note:	the	controller	always	has	to	reconnect	the	listener	before	trying	again	the	disconnection.	Indeed,	the	controller	cannot	send	directly	a	
DISCONNECT_TX_COMMAND	to	the	talker,	and	it’s	no	use	to	send	a	DISCONNECT_RX_COMMAND	to	the	listener	because	it	will	always	reply	with	
status=NOT_CONNECTED	without	even	trying	to	send	a	DISCONNECT_TX_COMMAND	to	the	talker.	
	
	
	

29	
	

4.7. Talker	connected	to	a	ghost	Listener	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	there	are	situations	where	the	controller	may	be	unable	to	disconnect	a	talker.	
	

1) Controller	successfully	establishes	a	connection	between	Talker	and	Listener	
2) Listener	is	removed	from	the	network	without	clean	disconnection	
3) Controller	cannot	disconnect	Talker	because	it	is	not	allowed	to	send	a	DISCONNECT_TX_COMMAND	

	
Note:	the	only	way	to	exit	from	this	locked	situation	is	to	add	back	the	listener	to	the	network	and	to	send	a	DISCONNECT_RX_COMMAND,	or	to	
reboot	the	talker.	While	the	talker	source	is	connected	to	at	least	one	listener	sink,	even	if	this	listener	has	disappeared,	it	will	continue	to	advertise	its	
stream	and	consume	some	SRP	resources	in	the	network.	
	
	

4.8. ACMP	connection	succeeds	even	if	no	bandwidth	for	the	stream	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	SRP	bandwidth	allocation	error	shall	not	change	the	status	of	an	ACMP	connection.	
	

1) Controller	sends	CONNECT_RX_COMMAND	to	Listener	
2) Listener	receives	CONNECT_RX_COMMAND	
3) Listener	sends	CONNECT_TX_COMMAND	to	Talker	
4) Talker	receives	CONNECT_TX_COMMAND	

30	
	

5) Talker	executes	successfully	the	“connectTalker”	function.	The	“connectTalker”	function	requests	the	SRP	stack	of	Talker	to	advertise	and	
register	the	right	MRP	attributes	as	soon	as	possible	in	order	to	advertise	its	stream	and	reserve	bandwidth	for	it	on	the	path	from	Talker	to	
Listener.	Let’s	suppose	that,	at	this	time,	the	SRP	stack	of	Talker	already	knows	that	there	is	no	more	bandwidth	available	on	the	link.	Thus	it	
immediately	advertises	a	Talker	Failed	attribute	instead	of	a	Talker	Advertise.	

6) Talker	sends	CONNECT_TX_RESPONSE	with	status=SUCCESS	(and	not	TALKER_NO_BANDWIDTH!!!)	
7) Listener	receives	CONNECT_TX_RESPONSE	with	status=SUCCESS	
8) Listener	executes	successfully	the	“connectListener”	function.	
9) Listener	sends	CONNECT_RX_RESPONSE	with	status=SUCCESS	
10) Controller	receives	CONNECT_RX_RESPONSE	with	status=SUCCESS	

	
We	see	there	that	the	ACMP	connection	is	established	with	no	error	between	the	talker	and	the	listener,	but	no	bandwidth	has	been	reserved	for	the	
stream	(the	listener	will	be	aware	of	that	because	it	will	receive	a	Talker	Failed	attribute).		
	
Note:	the	TALKER_NO_BANDWIDTH	status	code	(value=5)	defined	by	the	IEEE	1722.1-2013	standard	shall	never	be	used	because	a	bandwidth	
allocation	problem	can	never	make	an	ACMP	connection	fail.	
	
	

4.9. ACMP	connection	fails	because	MAAP	fails	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	a	MAAP	error	will	prevent	an	ACMP	connection	to	be	done	(contrary	to	an	SRP	error).	
	

1) Controller	sends	CONNECT_RX_COMMAND	to	Listener	
2) Listener	receives	CONNECT_RX_COMMAND	
3) Listener	sends	CONNECT_TX_COMMAND	to	Talker	
4) Talker	receives	CONNECT_TX_COMMAND	
5) Let’s	assume	here	that	Talker	is	configured	to	dynamically	allocate	a	destination	MAC	address	through	MAAP	(this	means	that	it	didn’t	receive	a	

SET_STREAM_INFO	command	with	stream_dest_mac<>00:00:00:00:00:00	and	flags.STREAM_DEST_MAC_VALID=1.).	Let’s	assume	also	that	

31	
	

Talker	doesn’t	manage	to	allocate	a	MAC	address	through	MAAP	(even	after	a	1.5	second	timeout).	This	may	happen	if	there	is	an	aggressive	
device	on	the	network	that	always	defends	the	addresses	chosen	by	Talker.	

6) Talker	cannot	establish	the	ACMP	connection	and	sends	CONNECT_TX_RESPONSE	with	status=TALKER_DEST_MAC_FAIL	
7) Listener	receives	CONNECT_TX_RESPONSE	with	status=	TALKER_DEST_MAC_FAIL	
8) Listener	doesn’t	connect	because	status<>SUCCESS	
9) Listener	sends	CONNECT_RX_RESPONSE	with	status=	TALKER_DEST_MAC_FAIL	
10) Controller	receives	CONNECT_RX_RESPONSE	with	status=	TALKER_DEST_MAC_FAIL	

	
We	see	there	that	the	ACMP	connection	is	not	established	due	to	the	fact	that	the	talker	has	no	MAC	address	for	its	stream.	Please	note	that	if	the	talker	
continuously	fails	in	dynamically	allocating	a	MAC	address	through	MAAP,	the	controller	may	assign	a	predefined	MAC	address	to	it	thanks	to	the	
SET_STREAM_INFO	command	(if	the	talker	implements	this	command).	
	

4.10. MAAP	fails	after	a	successful	ACMP	connection	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	a	MAAP	error	occurring	after	a	successful	ACMP	connection	will	not	break	the	ACMP	connection.	
	

1) Controller	successfully	establishes	a	connection	between	Talker	and	Listener	
2) Talker	loses	the	MAAP	address	range	it	had	allocated	for	this	connection	
3) Talker	immediately	tries	to	allocate	a	new	MAAP	address	range.	During	this	time,	Talker	doesn’t	send	any	packet	to	the	old	MAC	address	and	

asks	the	SRP	stack	to	stop	advertising	any	Talker	attribute.	
4) As	soon	as	Talker	has	managed	to	allocate	a	new	MAAP	address	range,	it	asks	the	SRP	stack	to	advertise	a	Talker	attribute	with	the	new	MAC	

address.	Please	note	that	the	SRP	stack	may	delay	this	declaration	(up	to	30	seconds)	due	to	the	inherent	constraints	of	the	SRP	protocol.	
	
Notes:	
- If	the	talker	never	manages	to	allocate	a	new	MAAP	address	range,	it	stays	connected	but	doesn’t	declare	any	Talker	attribute.	
- If	the	talker	manages	to	allocate	a	new	MAAP	address	range	for	its	stream,	all	subsequent	CONNECT_TX_RESPONSE,	

GET_TX_STATE_RESPONSE	and	GET_TX_CONNECTION_RESPONSE	messages	will	carry	the	new	MAC	address	

32	
	

- A	talker	changing	its	stream	destination	MAC	address	will	not	inform	anybody	asynchronously	through	ACMP	messages,	but	it	can	send	an	
unsolicited	GET_STREAM_INFO	message	to	the	registered	controllers	

- The	listener	must	be	prepared	to	take	into	account	SRP	stream	parameters	different	from	the	parameters	advertised	in	the	
CONNECT_TX_RESPONSE	message.		

4.11. SRP	stream	parameters	different	from	ACMP	stream	parameters	
	
In	this	scenario,	there	are	3	AVDECC	entities:	
- A	listener:	Listener	
- A	talker:	Talker	
- A	controller:	Controller	

	
The	goal	of	this	scenario	is	to	show	that	a	Talker	shall	give	precedence	to	SRP	stream	parameters	over	ACMP	stream	parameters.	
	

1) Controller	successfully	establishes	a	connection	between	Talker	and	Listener	
2) Listener	initializes	the	parameters	of	the	stream	it	is	going	to	receive	with	the	fields	of	the	CONNECT_TX_RESPONSE	message	

(stream_dest_mac,	stream_vlan_id	and	flags.CLASS_B).	In	particular,	Listener	subscribes	to	the	right	VLAN	ID	and	starts	listening	to	data	
packets	with	the	correct	destination	MAC	address	and	the	priority	code	point	associated	to	the	correct	SR	class.	

3) Later,	the	SRP	stack	of	Listener	receives	a	Talker	attribute	with	different	stream	parameters	(destination	MAC	address	and/or	VLAN	ID	and/or	
SR	class).	Listener	must	use	these	SRP	parameters	rather	than	the	parameters	of	the	CONNECT_TX_RESPONSE.	In	particular,	it	may	have	to	
subscribe	to	another	VLAN	ID,	listening	to	another	destination	MAC	address	and	another	priority	code	point.	

4) Later,	Listener	may	receive	again	different	stream	parameters	through	SRP.	In	this	case,	Listener	shall	use	the	latest	SRP	parameters.	
5) If	at	one	point,	Listener	doesn’t	receive	any	Talker	attribute	anymore,	it	keeps	the	last	received	SRP	parameters	and	don’t	fall	back	to	the	initial	

parameters	received	in	the	CONNECT_TX_RESPONSE	(these	ones	are	now	completely	obsolete).	
	
Note:	the	listener	shall	always	fill	the	fields	of	the	GET_RX_STATE_RESPONSE	message	with	the	stream	parameters	it	is	currently	using.	This	means	
that	if	these	parameters	have	changed	since	the	ACMP	connection	has	been	established,	the	listener	will	return	the	latest	received	SRP	stream	
parameters.	
	

