
1	
	

	
	
	
	
	
	

AVDECC	clarifications	
	
Part	2	–	AEM	commands	
	
Revision	3	
3/1/2016	

	

2	
	

1. Introduction	
	

The	goal	of	this	document	is	to	clarify	some	parts	of	the	AVDECC	specification	(IEEE	Std.	1722.1™-
2013).	
	

This	document	tries	to	describe	precisely	all	the	fields	of	some	selected	AEM	
commands/responses.	It	also	defines	a	few	concepts	that	make	the	descriptions	easier.	The	scope	of	
these	concepts	is	limited	to	this	document	only.	
	

This	document	is	open	for	comments	and	proposals.	Please	do	not	hesitate	to	add/discuss/correct	
any	point	if	needed.	The	goal	is	to	finally	have	everybody	agree	so	that	a	manufacturer	releasing	an	
AVDECC	device	now	can	be	confident	that	it	will	interoperate	with	any	other	AVDECC	device	that	will	
be	released	in	the	future.	
	
	
	

2. Revision	History	
	
Version	 Description	
1	 Initial	release	of	the	document	

February	24th,	2016	
2	 Fixed	an	error	in	the	description	of	the	“flags.FAST_CONNECT”	field	of	GET_STREAM_INFO	

response	from	a	Listener	sink.	
February	25th,	2016	

3	 Added	section	“Identifiers	used	in	AVDECC”.	
Added	sections	“Informational	note	about	the	SRP	stack	of	a	Listener/Talker”.	
Added	section	“SET_ASSOCIATION_ID	and	GET_ASSOCIATION_ID”.	
Added	section	“SET_CLOCK_SOURCE	and	GET_CLOCK_SOURCE”.	
March	1st,	2016	

	
	

3	
	

Contents	
	
1.	 Introduction	..	2	
2.	 Revision	History	..	2	
3.	 State	of	a	Listener	sink	...	4	
3.1.	 AVDECC	connected	state	...	4	
3.2.	 AVDECC	active	state	..	4	
3.3.	 SRP	registering	state	...	5	
3.4.	 Informational	note	about	the	SRP	stack	of	a	Listener	..	5	

4.	 State	of	a	Talker	source	..	6	
4.1.	 AVDECC	connected	state	...	6	
4.2.	 AVDECC	active	state	..	7	
4.3.	 SRP	registering	state	...	7	
4.4.	 Informational	note	about	the	SRP	stack	of	a	Talker	..	8	

5.	 Identifiers	used	in	AVDECC	..	9	
5.1.	 EUI-64	..	9	
5.2.	 Clock	Identity	..	9	
5.3.	 Entity	ID	..	9	
5.4.	 Entity	model	ID	..	10	
5.5.	 Association	ID	...	10	
5.6.	 Clock	source	identifier	..	10	
5.7.	 Stream	ID	..	11	

6.	 AEM	commands	..	12	
6.1.	 START_STREAMING	and	STOP_STREAMING	...	12	
6.1.1.	 To	a	Listener	sink	...	12	
6.1.2.	 To	a	Talker	source	...	12	

6.2.	 GET_STREAM_INFO	response	...	12	
6.2.1.	 From	a	Listener	sink	...	12	
6.2.2.	 From	a	Talker	source	...	14	

6.3.	 SET_STREAM_INFO	command	..	16	
6.3.1.	 To	a	Listener	sink	...	16	
6.3.2.	 To	a	Talker	source	...	17	

6.4.	 SET_ASSOCIATION_ID	and	GET_ASSOCIATION_ID	..	19	
6.4.1.	 SET_ASSOCIATION_ID	..	19	
6.4.2.	 GET_ASSOCIATION_ID	...	19	

6.5.	 SET_CLOCK_SOURCE	and	GET_CLOCK_SOURCE	...	19	
6.5.1.	 SET_CLOCK_SOURCE	..	19	
6.5.2.	 GET_CLOCK_SOURCE	..	20	

	
	
	
	
	
	

4	
	

3. State	of	a	Listener	sink	

3.1. AVDECC	connected	state	
	
A	Listener	sink	can	be	either	connected	or	disconnected.	The	connected	state	of	a	Listener	sink	is	
logically	equivalent	to	the	“connected”	field	of	the	“ListenerStreamInfo”	structure	associated	with	this	
sink	(refer	to	the	ACMP	specification).	
	
Connected	means	that	the	sink	has	been	successfully	attached	to	a	Talker	source	through	ACMP.	It	also	
means	that	the	SRP	stack	of	the	Listener	is	aware	that	it	has	to	advertise	and	register	the	right	MRP	
attributes	as	soon	as	possible	in	order	to	reserve	bandwidth	for	the	Talker	stream	on	the	path	from	
the	Talker	to	the	Listener.	Please	note	that	due	to	inherent	constraints	of	the	SRP	protocol,	the	SRP	
stack	has	to	run	asynchronously	from	the	ACMP	state	machines,	thus	the	operation	of	the	SRP	stack	
may	be	delayed	compared	to	the	ACMP	connected	state	of	the	sink.	
	
At	startup,	all	the	sinks	of	a	Listener	are	disconnected.	Later,	when	a	sink	is	involved	in	the	ACMP	
connection	mechanism	(either	Controller	Connect	or	Fast	Connect)	and	finally	calls	successfully	the	
“connectListener”	function,	it	goes	to	the	connected	state.	When	a	connected	sink	is	involved	in	the	
ACMP	disconnection	mechanism	(either	Controller	Disconnect	or	Fast	Disconnect)	and	calls	
successfully	the	“disconnectListener”	function,	it	goes	back	to	the	disconnected	state.	
	
Please	note	that	a	Listener	sink	trying	to	connect	to	a	Talker	source	in	Fast	Connect	mode	remains	
disconnected	until	it	receives	a	successful	CONNECT_TX_RESPONSE	from	the	Talker	and	successfully	
calls	“connectListener”.	This	means	that	if	the	Talker	never	replies,	the	Listener	sink	remains	
disconnected.	Please	note	also	that	a	Controller	is	able	to	break	this	Fast	Connect	attempt	by	sending	a	
DISCONNECT_RX_COMMAND	message	to	the	Listener	sink	or	by	requesting	the	Listener	sink	to	
connect	to	another	Talker	source.	
	
	

3.2. AVDECC	active	state	
	
A	Listener	sink	which	is	connected	may	be	either	active	or	inactive.	A	Listener	sink	which	is	
disconnected	is	always	inactive.	
	
	Active	means	that	the	sink	treats	the	incoming	data	packets	(AVTP	for	example)	from	its	Talker	
source.	Inactive	means	that	it	doesn’t	treat	the	incoming	data	packets.	Please	note	that	the	AVDECC	
active	or	inactive	state	of	a	Listener	sink	doesn’t	change	anything	to	the	SRP	behaviour	of	the	Listener	
(the	Listener	still	advertises	the	right	MSRP	and	MVRP	attributes).	
	
The	advantage	of	having	a	Listener	sink	inactive	is	to	modify	the	parameters	of	this	sink	without	
having	to	disconnect	it	from	its	Talker	source	(both	at	the	ACMP	and	at	the	SRP	levels).		
	
At	startup,	as	all	the	sinks	of	a	Listener	are	disconnected,	they	are	also	inactive.	When	a	sink	goes	from	
the	disconnected	state	to	the	connected	state,	it	becomes	active	if	the	“STREAMING_WAIT”	flag	of	the	
CONNECT_TX_RESPONSE	message	is	0.	Otherwise,	it	remains	inactive.	
	
After	that,	while	the	sink	is	connected,	its	active	state	can	be	changed	by	a	Controller	by	sending	a	
START_STREAMING	or	STOP_STREAMING	command	to	the	related	STREAM_INPUT	descriptor.	Please	
note	that	sending	such	a	command	to	a	disconnected	sink	will	not	do	anything.	
	

5	
	

3.3. SRP	registering	state	
	
A	Listener	sink	which	is	connected	may	be	either	registering	or	not	registering	a	Talker	attribute.	A	
Listener	sink	which	is	disconnected	is	always	not	registering	(because	anyway	a	disconnected	sink	
doesn’t	listen	to	Talker	attributes).	Please	note	that	we	are	talking	here	about	the	Talker	attribute	
related	to	the	stream	to	which	the	sink	is	connected	(advertised	by	the	talker	in	the	
CONNECT_TX_RESPONSE	message).	This	can	be	either	an	MSRP	Talker	Advertise	or	an	MSRP	Talker	
Failed	attribute.	
	
A	registering	sink	is	able	to	extract	the	following	information	from	its	SRP	stack:	

- The	destination	MAC	address	of	the	stream	
- The	Class	(A	or	B)	of	the	stream	
- The	VLAN	ID	of	the	stream	
- The	accumulated	latency	of	the	stream	
- The	Failure	code	and	Failure	bridge	ID	(in	case	of	a	Talker	Failed)	

	
If	one	of	these	pieces	of	information	conflicts	with	what	is	advertised	by	the	Talker	in	the	
CONNECT_TX_RESPONSE	message,	then	the	Listener	shall	use	the	information	from	the	SRP	stack.	If	
the	Listener	uses	the	information	from	the	CONNECT_TX_RESPONSE	message	before	going	to	the	
registering	state,	it	must	be	prepared	to	change	this	information	while	the	stream	is	running.	
	
The	registering	state	of	a	Listener	sink	is	not	affected	by	its	active	state.	If	a	sink	becomes	inactive,	it	
still	continues	to	run	the	SRP	protocol	and	to	listen	to	Talker	attributes.		
	
At	startup,	as	all	the	sinks	of	a	Listener	are	disconnected,	they	are	also	not	registering.	When	a	sink	
goes	from	the	disconnected	state	to	the	connected	state,	it	gets	the	current	status	of	the	SRP	stack	in	
order	to	know	whether	it	is	already	registering	a	Talker	attribute	for	this	stream	ID.	If	yes,	the	sink	
becomes	registering.	Otherwise,	is	remains	not	registering.	
	
After	that,	depending	on	the	MSRP	Talker	declarations	made	by	the	Talker	and	propagated	by	the	
Bridges,	the	Listener	sink	may	change	its	state	from	registering	to	not	registering	and	vice	versa.	
	
	

3.4. Informational	note	about	the	SRP	stack	of	a	Listener	
	
As	soon	as	a	Listener	sink	is	connected,	it	requests	its	SRP	stack	to:	

	
- Declare	an	MVRP	VID	attribute	for	the	VLAN	ID	of	the	stream	to	which	the	sink	is	connected	
- Declare	an	MSRP	Listener	Ready	attribute	for	the	stream	ID	of	the	stream	to	which	the	sink	is	

connected	
- Notify	it	asynchronously	each	time	the	registration	status	of	the	MSRP	Talker	Advertise	and	

MSRP	Talker	Failed	attributes	changes	for	the	stream	ID	of	the	stream	to	which	the	sink	is	
connected	

	
The	SRP	stack	centralizes	the	requests	from	all	the	sinks	of	the	Entity	in	order	not	to	declare	twice	the	
same	attribute	(for	example	a	given	VID	attribute	shall	not	be	duplicated	if	two	sinks	are	connected	to	
two	streams	using	the	same	VLAN).	
	
The	SRP	stack	may	delay	the	treatment	of	the	requests	in	order	to	respect	the	timing	constraints	
imposed	by	the	SRP	protocol.		
	

6	
	

The	SRP	stack	may	also	modify	the	MSRP	Listener	attribute	supplied	by	the	sink.	The	rules	are	as	
follows:	

- If	the	SRP	stack	is	registering	a	Talker	Advertise	attribute	for	this	stream	ID	then	it	doesn’t	
change	the	supplied	MSRP	Listener	attribute	

- If	the	SRP	stack	is	registering	a	Talker	Failed	attribute	for	this	stream	ID	then	it	changes	the	
supplied	MSRP	Listener	Ready	attribute	into	an	MSRP	Listener	Asking	Failed	attribute	

- If	the	SRP	stack	is	not	registering	any	Talker	attribute	(neither	Talker	Advertise	nor	Talker	
Failed)	for	this	stream	ID	then	it	doesn’t	declare	the	MSRP	Listener	attribute	

	
It’s	important	to	understand	that	the	AVDECC	Listener	state	machines	don’t	need	to	know	what	MRP	
attributes	the	SRP	stack	is	currently	declaring	physically	on	the	network.	Once	the	AVDECC	Listener	
has	requested	the	SRP	stack	to	declare	an	MRP	attribute,	the	SRP	stack	does	the	job	asynchronously.	
The	only	feedback	given	by	the	SRP	stack	to	the	AVDECC	Listener	is	the	registration	status	of	the	
MSRP	Talker	Advertise	and	MSRP	Talker	Failed	attributes	for	the	stream(s)	it	is	connected	to:	

- If	the	SRP	stack	is	registering	an	MSRP	Talker	Advertise	attribute	for	a	stream	of	interest	then	
it	informs	the	AVDECC	Listener	that	the	stream	reservation	is	successful	and	provides	it	with	
the	parameters	of	the	stream	

- If	the	SRP	stack	is	registering	an	MSRP	Talker	Failed	attribute	for	a	stream	of	interest	then	it	
informs	the	AVDECC	Listener	that	the	stream	reservation	is	failing	and	provides	it	with	the	
parameters	of	the	stream	and	with	the	failure	reason	and	failure	point	

- If	the	SRP	stack	is	registering	neither	an	MSRP	Talker	Advertise	nor	an	MSRP	Talker	Failed	
attribute	for	a	stream	of	interest	then	it	informs	the	AVDECC	Listener	that	there	is	no	Talker	
advertising	this	stream	

	
	
	

4. State	of	a	Talker	source	
	

4.1. AVDECC	connected	state	
	
A	Talker	source	can	be	either	connected	or	disconnected.	The	connected	state	of	a	Talker	source	is	
logically	equivalent	to	the	“connection_count”	field	of	the	“TalkerStreamInfo”	structure	associated	
with	this	source	(refer	to	the	ACMP	specification)	being	different	from	0.	
	
Connected	means	that	the	source	has	been	successfully	attached	to	at	least	one	Listener	sink	through	
ACMP.	It	also	means	that	the	SRP	stack	of	the	Talker	is	aware	that	it	has	to	advertise	and	register	the	
right	MRP	attributes	as	soon	as	possible	in	order	to	advertise	its	stream	and	reserve	bandwidth	for	it	
on	the	paths	from	the	Talker	to	the	interested	Listeners.	Please	note	that	due	to	inherent	constraints	
of	the	SRP	protocol,	the	SRP	stack	has	to	run	asynchronously	from	the	ACMP	state	machines,	thus	the	
operation	of	the	SRP	stack	may	be	delayed	compared	to	the	ACMP	connected	state	of	the	source.	
	
At	startup,	all	the	sources	of	a	Talker	are	disconnected.	Later,	when	a	source	is	involved	in	the	ACMP	
connection	mechanism	and	calls	successfully	the	“connectTalker”	function,	it	goes	to	the	connected	
state.	When	a	connected	source	is	involved	in	the	ACMP	disconnection	mechanism	and	calls	
successfully	the	“disconnectListener”	function,	if	connection_count	reaches	0	then	it	goes	back	to	the	
disconnected	state.	
	

7	
	

4.2. AVDECC	active	state	
	
A	Talker	source	which	is	connected	may	be	either	active	or	inactive.	A	Talker	source	which	is	
disconnected	is	always	inactive.	
	
Active	means	that	the	source	sends	data	packets	(AVTP	for	example)	as	long	as	SRP	allows	it.	Inactive	
means	that	the	source	doesn’t	send	any	data	packet,	whatever	the	SRP	state.	Please	note	that	the	
AVDECC	active	or	inactive	state	of	a	Talker	source	doesn’t	change	anything	to	the	SRP	behaviour	of	the	
Talker	(the	Taker	still	advertises	the	right	MSRP	and	MVRP	attributes).	
	
The	advantage	of	having	a	Talker	source	inactive	is	to	modify	the	parameters	of	this	source	without	
having	to	disconnect	it	from	all	of	its	Listener	sinks	(both	at	the	ACMP	and	at	the	SRP	levels).		
	
At	startup,	as	all	the	sources	of	a	Talker	are	disconnected,	they	are	also	inactive.	When	a	source	goes	
from	the	disconnected	state	to	the	connected	state,	it	becomes	active	if	the	“STREAMING_WAIT”	flag	of	
the	CONNECT_TX_COMMAND	message	is	0.	Otherwise,	it	remains	inactive.	After	that,	all	the	
subsequent	connections	with	other	Listener	sinks	will	increase	the	connection_count	and	update	the	
current	active	state	depending	on	the	STREAMING_WAIT	flag	of	the	last	CONNECT_TX_COMMAND	
message.	
	
Another	way	of	changing	the	active	state	of	a	connected	Talker	source	is	to	send	a	START_STREAMING	
or	STOP_STREAMING	command	to	the	related	STREAM_OUTPUT	descriptor.	Please	note	that	sending	
such	a	command	to	a	disconnected	source	will	not	do	anything.	
	
	

4.3. SRP	registering	state	
	
A	Talker	source	which	is	connected	may	be	either	registering	or	not	registering	a	Listener	attribute.	A	
Talker	source	which	is	disconnected	is	always	not	registering	(because	anyway	a	disconnected	source	
doesn’t	listen	to	Listener	attributes).	Please	note	that	we	are	talking	here	about	the	Listener	attribute	
related	to	the	stream	the	Talker	is	generating.		
	
The	registering	state	of	a	Talker	source	is	not	affected	by	its	active	state.	If	a	source	becomes	inactive,	
it	still	continues	to	run	the	SRP	protocol	and	to	listen	to	Listener	attributes.		
	
At	startup,	as	all	the	sources	of	a	Talker	are	disconnected,	they	are	also	not	registering.	When	a	source	
goes	from	the	disconnected	state	to	the	connected	state,	it	gets	the	current	status	of	the	SRP	stack	in	
order	to	know	whether	it	is	already	registering	a	Listener	attribute	for	this	stream	ID.	If	yes,	the	
source	becomes	registering.	Otherwise,	is	remains	not	registering.	
	
After	that,	depending	on	the	MSRP	Listener	declarations	made	by	the	Listener(s)	and	propagated	by	
the	Bridges,	the	Talker	source	may	change	its	state	from	registering	to	not	registering	and	vice	versa.	
	
	
	
	
	
	

8	
	

4.4. Informational	note	about	the	SRP	stack	of	a	Talker	
	
As	soon	as	a	Talker	source	is	connected,	it	requests	its	SRP	stack	to:	

	
- Declare	an	MVRP	VID	attribute	for	the	VLAN	ID	of	the	stream	the	source	is	generating	
- Declare	an	MSRP	Talker	Advertise	attribute	for	the	stream	ID	of	the	stream	the	source	is	

generating	(the	source	also	supplies	to	the	SRP	stack	the	parameters	of	the	stream	–	
destination	MAC	address,	VLAN	ID,	SR	Class,	…)	

- Notify	it	asynchronously	each	time	the	registration	status	of	the	MSRP	Listener	attribute	
changes	for	the	stream	ID	of	the	stream	the	source	is	generating	

	
The	SRP	stack	centralizes	the	requests	from	all	the	sources	of	the	Entity	in	order	not	to	declare	twice	
the	same	attribute	(for	example	a	given	VID	attribute	shall	not	be	duplicated	if	two	sources	are	
generating	two	streams	using	the	same	VLAN).	
	
The	SRP	stack	may	delay	the	treatment	of	the	requests	in	order	to	respect	the	timing	constraints	
imposed	by	the	SRP	protocol.	The	biggest	delay	that	a	Talker	may	encounter	is	related	to	a	change	of	
the	stream	parameters	in	the	MSRP	Talker	attribute.	
	
The	SRP	stack	may	also	modify	the	MSRP	Talker	Advertise	attribute	supplied	by	the	source	into	an	
MSRP	Talker	Failed	attribute	in	case	of	one	of	an	error	(for	example	not	enough	bandwidth	available	
on	the	link).	
	
It’s	important	to	understand	that	the	AVDECC	Talker	state	machines	don’t	need	to	know	what	MRP	
attributes	the	SRP	stack	is	currently	declaring	physically	on	the	network.	Once	the	AVDECC	Talker	has	
requested	the	SRP	stack	to	declare	an	MRP	attribute,	the	SRP	stack	does	the	job	asynchronously.	The	
only	feedback	given	by	the	SRP	stack	to	the	AVDECC	Talker	is	the	registration	status	of	the	MSRP	
Listener	attribute	for	the	stream(s)	it	is	generating:	

- If	the	SRP	stack	is	registering	an	MSRP	Listener	Ready	attribute	for	a	stream	of	interest	then	it	
informs	the	AVDECC	Talker	that	the	stream	reservation	is	successful	and	that	all	the	asking	
Listeners	are	able	to	receive	the	stream	;	from	the	SRP	point	of	view,	the	Talker	is	authorized	to	
send	data	packets	for	this	stream	

- If	the	SRP	stack	is	registering	an	MSRP	Listener	Ready	Failed	attribute	for	a	stream	of	interest	
then	it	informs	the	AVDECC	Talker	that	the	stream	reservation	is	successful	but	only	a	subset	
of		the	asking	Listeners	are	able	to	receive	the	stream	;	from	the	SRP	point	of	view,	the	Talker	is	
authorized	to	send	data	packets	for	this	stream	

- If	the	SRP	stack	is	registering	an	MSRP	Listener	Asking	Failed	attribute	for	a	stream	of	interest	
then	it	informs	the	AVDECC	Talker	that	the	stream	reservation	is	failing	for	all	the	asking	
Listeners	;	the	Talker	is	not	authorized	to	send	any	data	packet	for	this	stream	

- If	the	SRP	stack	is	not	registering	an	MSRP	Listener	attribute	for	a	stream	of	interest	then	it	
informs	the	AVDECC	Talker	that	the	stream	reservation	is	not	done	because	there	is	no	asking	
Listener	;	the	Talker	is	not	authorized	to	send	any	data	packet	for	this	stream	

	
	
	
	
	
	
	

9	
	

5. Identifiers	used	in	AVDECC	
	

5.1. EUI-64	
	
The	term	EUI-64	is	a	trademark	from	IEEE.	It	stands	for	“64-bit	Extended	Unique	Identifier”.	
	
A	EUI-64	is	a	64-bit	number	which	globally	uniquely	identifies	an	object.	The	identified	object	may	be	
a	physical	object	(a	network	interface,	a	device,	a	clock,	etc.)	or	a	logical	object	(a	group	of	entities,	a	
model,	a	protocol,	etc.).	No	matter	the	type	of	the	object,	its	EUI-64	is	globally	unique:	not	only	two	
objects	of	the	same	type	(for	example	two	network	interfaces)	cannot	share	the	same	EUI-64,	but	also	
two	objects	of	different	type	(for	example	a	network	interface	and	a	protocol)	cannot	share	the	same	
EUI-64.	
	
A	EUI-64	is	composed	of	a	part	assigned	by	the	IEEE	Registration	Authority	to	an	organization,	and	a	
part	assigned	by	the	organization	itself.	For	example,	organizations	which	have	subscribed	to	a	24-bit	
OUI	build	their	EUI-64	as	follows:	

- First	24	bits	:	the	value	of	the	OUI	of	the	organization	
- Last	40	bit	:	a	value	defined	by	the	organization	

	
Please	note	that	the	all-zeros	and	all-ones	EUI64	values,	00:00:00:00:00:00:00:00	and	
FF:FF:FF:FF:FF:FF:FF:FF,	cannot	be	assigned	and	are	invalid	for	use	as	identifiers.	The	IEEE	
recommends	to	use	FF:FF:FF:FF:FF:FF:FF:FF	as	the	“null”	identifier	(invalid	EUI-64	value).	
	
Please	note	that	the	IEEE	also	defines	the	term	EUI-48	for	“48-bit	Extended	Unique	Identifier”.	The	
principle	is	the	same	as	EUI-64,	but	there	are	16	bits	less	for	the	organization-defined	part.	As	a	
consequence,	the	usage	of	EUI-48	is	limited	to	physical	objects	and	protocol	identification	only.	A	
well-spread	usage	of	EUI-48	is	for	MAC	addresses	(the	ones	that	are	globally	unique,	not	the	locally-
administered	ones).	When	a	EUI-64	is	used	to	identify	the	same	object	as	a	EUI-48,	the	IEEE	defines	
the	following	mapping	procedure:	

- The	first	3	octets	(positions	0,	1	and	2)	of	the	EUI-64	are	equal	to	the	first	3	octets	of	the	EUI-48	
- The	2	octets	at	positions	3	and	4	of	the	EUI-64	are	set	to	FF:FE	
- The	last	3	octets	(positions	5,	6	and	7)	of	the	EUI-64	are	equal	to	the	last	3	octets	of	the	EUI-48	

	

5.2. Clock	Identity	
	
When	an	AVDECC	Entity	has	one	or	several	AVB	interface(s),	each	of	them	is	identified	by	a	EUI-64	
called	the	“Clock	Identity”	of	the	AVB	interface.	
	
This	Clock	Identity	is	defined	by	the	IEEE	802.1AS-2011	standard	and	shall	be	mapped	from	the	48-bit	
MAC	address	of	the	AVB	interface	by	using	the	mapping	procedure	defined	in	section	“5.1EUI-64”.	
	

5.3. Entity	ID	
	
Each	AVDECC	Entity	is	identified	by	a	EUI-64	called	the	“Entity	ID”	of	the	Entity.	
	
It’s	up	to	the	vendor	manufacturing	the	device	to	assign	this	EUI-64	to	the	entity.	The	vendor	can,	but	
is	not	obliged	to,	use	the	MAC	address	of	the	entity’s	primary	network	port	to	identity	the	entity,	this	
means	map	the	48-bit	MAC	address	to	the	64-bit	Entity	ID	by	using	the	mapping	procedure	defined	in	

10	
	

section	“5.1EUI-64”.	If	the	AVDECC	Entity	has	an	AVB	interface,	its	Entity	ID	will	be	equal	to	the	Clock	
Identifier	of	this	AVB	interface.	
	
In	case	of	an	End	Station	containing	multiple	AVDECC	Entities,	each	AVDECC	Entity	has	a	unique	
Entity	ID.	
	
	

5.4. Entity	model	ID	
	
Each	AVDECC	Entity	advertises	an	AEM	model	to	the	external	world.	This	model	contains	static	parts	
and	dynamic	parts.	Static	parts	cannot	be	changed	during	the	normal	operation	of	the	entity	(for	
example	the	number	of	STREAM_INPUT	descriptors).	Dynamic	parts	can	be	changed	by	a	controller	
during	normal	operations	(for	example	the	current	format	of	a	STREAM_INPUT	descriptor).	The	IEEE	
1722.1-2013	standard	clearly	defines	what	is	static	and	what	is	dynamic	in	the	AEM	model.	
	
The	static	part	of	an	AEM	model	from	a	specific	vendor	is	identified	by	a	EUI-64	called	the	“Entity	
model	ID”.	It’s	up	to	the	manufacturer	to	assign	this	EUI-64	to	each	AEM	model	advertised	by	its	
entities.	Two	different	entities	of	the	same	vendor	shall	have	the	same	model	ID	if,	and	only	if,	they	
have	the	same	AEM	model.	If	the	firmware	of	an	entity	is	updated	and	if	the	AEM	model	advertised	by	
the	new	firmware	is	different	from	the	model	ID	advertised	by	the	old	firmware,	then	the	model	IDs	
used	in	these	two	firmwares	shall	be	different.	
	
The	ultimate	goal	of	the	model	ID	is	to	simplify	the	enumeration	of	the	entities	done	by	the	
controllers.	Suppose	that	you	have	100	AVDECC	Entities	on	the	network	and	these	100	Entities	
advertise	the	same	AEM	model.	In	this	case,	all	of	them	will	use	the	same	“Entity	model	ID”	(in	the	
ENTITY_AVAILABLE	ADPDU	and	in	the	ENTITY	descriptor)	and	the	controller	will	have	to	enumerate	
only	one	of	the	Entities	to	get	the	static	part	of	the	model.	This	is	very	important	to	reduce	the	traffic	
on	the	network.	
	

5.5. Association	ID	
	
A	controller	may	associate	several	AVDECC	Entities	into	a	logical	collection.	The	goal	is	to	allow	the	
user	to	view	and	control	them	as	a	single	logical	AVDECC	Entity.	The	association	information	is	stored	
on	the	entities	themselves	rather	than	on	a	specific	controller,	so	that	the	logical	collection	created	by	
a	controller	can	be	retrieved	by	other	controllers.	
	
Each	logical	collection	of	Entities	is	identified	by	a	EUI-64	called	the	“association	ID”.	It’s	up	to	the	final	
user	to	choose	a	EUI-64	to	identify	a	collection.	If	an	AVDECC	Entity	is	not	part	of	any	collection	then	
its	association	ID	shall	be	set	to	00:00:00:00:00:00:00:00.	If	an	AVDECC	Entity	is	part	of	a	collection	
then	its	association	ID	shall	be	set	to	the	association	ID	of	the	collection	(the	controller	uses	the	
SET_ASSOCIATION_ID	command	to	do	so).	
	
Please	note	that	support	of	the	association	ID	is	not	mandatory.	An	AVDECC	entity	not	supporting	the	
association	ID	shall	set	its	association	ID	to	00:00:00:00:00:00:00:00.	
	

5.6. Clock	source	identifier	
	
Each	processing	unit	of	an	AVDECC	Entity	works	with	its	own	clock	domain.	This	means	that	all	the	
sub-units	of	this	processing	unit	are	sourced	by	a	common	clock,	which	is	the	clock	of	the	domain.	

11	
	

This	mainly	includes	the	clocks	used	in	ADCs	and	DACs,	and	in	synchronous	digital	data	transmission	
inside	the	unit.	
	
At	a	given	time,	a	clock	domain	uses	a	given	clock	source.	A	clock	source	may	be	internal	(a	crystal	
oscillator),	external	(a	word	clock,	an	S/PDIF	jack),	or	an	Input	Stream	(the	clock	is	reconstructed	
from	the	Talker	sampling	times	carried	in	the	data	packets).	The	clock	source	is	derived	by	the	Entity	
to	feed	the	clock	domain.		
	
When	an	AVDECC	Entity	is	able	to	use	different	possible	clock	sources	for	the	same	domain,	it	may	
authorize	the	controllers	to	change	the	currently	used	clock	source	with	the	SET_CLOCK_SOURCE	
command.	If	the	Entity	doesn’t	want	that	its	clock	source	be	changed	by	a	controller,	it	shall	not	
implement	the	SET_CLOCK_SOURCE	command.	
	
Each	clock	source	of	an	AVDECC	Entity	is	identified	by	a	EUI-64	called	the	“clock	source	identifier”.	
This	identifier	shall	be	constructed	as	follows:	

- The	first	6	bytes	are	the	lowest	MAC	address	of	the	Entity’s	AVB	Interfaces	
- The	last	2	bytes	are	a	16-bit	index	starting	at	0	and	incremented	by	1	for	every	INTERNAL	

source,	then	EXTERNAL,	then	INPUT_STREAM	
	
This	clock	source	identifier	is	advertised	by	default	by	the	Entity	in	the	CLOCK_SOURCE	descriptor.	A	
controller	may	override	the	value	of	a	clock	source	identifier	(for	EXTERNAL	and	INPUT_STREAM	
sources	only)	to	make	it	easy	to	see	if	2	clock	sources	from	2	different	Entities	are	derived	from	the	
same	source.		
	

5.7. Stream	ID	
	
Each	stream	on	an	AVB	network	is	uniquely	identified	by	a	64-bit	number	called	the	“stream	ID”.	
Please	note	that	a	stream	ID	is	not	a	EUI-64.	This	means	that	a	stream	can	have	a	stream	ID	which	is	
equal	to	the	EUI-64	of	an	object	which	is	not	a	stream	at	all	(typically	a	clock	source).	Nonetheless,	
there	is	a	precise	rule	to	build	a	stream	ID:	

- The	first	6	bytes	are	the	EUI-48	MAC	Address	associated	with	the	Talker	generating	the	stream	
to	the	AVB	network	

- The	last	2	bytes	are	used	to	distinguish	among	multiple	streams	sourced	by	the	same	Talker;	
they	form	a	16-bit	unsigned	integer	value	called	the	“Unique	ID”	of	the	stream	

	
The	Talker	is	responsible	for	choosing	the	Unique	IDs	of	the	streams	it	is	generating.	The	only	
constraint	is	that	2	streams	generated	by	the	same	Talker	in	the	same	AVB	network	shall	have	2	
different	Unique	IDs.	A	Controller	may	request	a	Talker	to	use	a	specific	Unique	ID	for	its	stream(s)	
thanks	to	the	SET_STREAM_INFO	command.	The	Controller	cannot	request	a	Talker	to	use	a	stream	ID	
which	6	first	bytes	are	not	equal	to	the	MAC	Address	of	the	Talker.	
	
Please	note	that	the	“Unique	ID”	of	a	stream	(as	defined	in	802.1Q)	has	nothing	to	do	with	the	“Unique	
ID”	of	a	Talker	source	(as	defined	in	ACMP).	The	Unique	ID	of	the	stream	generated	by	a	given	Talker	
source	is	not	necessarily	equal	to	the	Unique	ID	of	this	source.	For	example,	a	Talker	with	only	one	
STREAM_OUTPUT	descriptor	has	only	one	source.	The	Unique	ID	of	this	source	is	0.	But	every	time	
this	source	is	disconnected	and	connected	again,	the	Talker	can	choose	a	new	Unique	ID	for	the	
stream.	This	is	particularly	useful	if	the	parameters	of	the	stream	are	changed;	the	SRP	stack	of	the	
Talker	will	not	have	to	wait	2	LeaveAll	periods	before	declaring	the	new	Talker	Advertise	attribute.	
	
	

12	
	

6. AEM	commands		

6.1. START_STREAMING	and	STOP_STREAMING	

6.1.1. To	a	Listener	sink	
	
The	START_STREAMING	command	on	a	STREAM_INPUT	descriptor	is	used	to	set	a	Listener	sink	
active.	The	STOP_STREAMING	command	is	used	to	set	the	Listener	sink	inactive.	Please	note	that	these	
commands	have	no	effect	on	a	disconnected	Listener	sink.	
	
If	a	controller	is	not	sure	about	the	active	state	of	a	Listener	sink,	it	must	send	a	STOP_STREAMING	
command	to	it	prior	to	issuing	one	of	the	following	commands:	

- SET_STREAM_FORMAT	
- SET_STREAM_INFO	

	
Prior	to	issuing	the	following	command,	the	controller	must	send	a	STOP_STREAMING	to	all	the	sinks	
and	sources	of	an	entity:	

- SET_SAMPLING_RATE	
	

6.1.2. To	a	Talker	source	
	
The	START_STREAMING	command	on	a	STREAM_OUTPUT	descriptor	is	used	to	set	a	Talker	source	
active.	The	STOP_STREAMING	command	is	used	to	set	the	Talker	source	inactive.	Please	note	that	
these	commands	have	no	effect	on	a	disconnected	Talker	source.	
	
If	a	controller	is	not	sure	about	the	active	state	of	a	Talker	source,	it	must	send	a	STOP_STREAMING	
command	to	it	prior	to	issuing	one	of	the	following	commands:	

- SET_STREAM_FORMAT	
- SET_STREAM_INFO	

	
Prior	to	issuing	the	following	command,	the	controller	must	send	a	STOP_STREAMING	to	all	the	sinks	
and	sources	of	an	entity:	

- SET_SAMPLING_RATE	
	

6.2. GET_STREAM_INFO	response	

6.2.1. From	a	Listener	sink	
	
The	following	table	describes	what	a	Listener	shall	reply	to	a	GET_STREAM_INFO	command	on	one	of	
its	INPUT_STREAM	descriptors:	
	
stream_format/	
flags.STREAM_FORMAT_VALID	

Set	stream_format	to	the	currently	configured	stream	format	
for	this	Listener	sink.	This	field	is	always	valid,	no	matter	
whether	the	Listener	sink	is	connected	or	not.		
Always	set	flags.STREAM_FORMAT_VALID=1	

stream_id/	
flags.STREAM_ID_VALID	

- If	the	Listener	sink	is	connected:	set	stream_id	to	the	
value	received	in		the	CONNECT_TX_RESPONSE	message	
from	the	Talker	and	flags.STREAM_ID_VALID=1	

- Otherwise,	set	stream_id=00:00:00:00:00:00:00:00	and	

13	
	

flags.STREAM_ID_VALID=0	
msrp_accumulated_latency/	
flags.MSRP_ACC_LAT_VALID	

- If	the	Listener	sink	is	connected	and	registering	then	set	
msrp_accumulated_latency	to	the	value	found	in	the	
registered	Talker	attribute	and	set	
flags.MSRP_ACC_LAT_VALID=1	

- Otherwise,	set	msrp_accumulated_latency=0	and	
flags.MSRP_ACC_LAT_VALID=0	

stream_dest_mac/	
flags.STREAM_DEST_MAC_VALID	

- If	the	Listener	sink	is	connected	and	registering,	set	
stream_dest_mac	to	the	value	found	in	the	registered	
Talker	attribute	and	set	
flags.STREAM_DEST_MAC_VALID=1	

- If	the	Listener	sink	is	connected	but	not	registering,	set	
stream_dest_mac	to	the	value	received	in	the	
CONNECT_TX_RESPONSE	message	from	the	Talker	and	
set	flags.STREAM_DEST_MAC_VALID=1	

- If	the	Listener	sink	is	disconnected,	set	
stream_dest_mac=00:00:00:00:00:00	and	
flags.STREAM_DEST_MAC_VALID=0	

msrp_failure_code/	
msrp_failure_bridge_id/	
flags.MSRP_FAILURE_VALID	

- If	the	Listener	sink	is	connected	and	registering	a	Talker	
Advertise	attribute	then	set	msrp_failure_code=0,	
msrp_failure_bridge_id=00:00:00:00:00:00:00:00	and	
flags.MSRP_FAILURE_VALID=1	

- If	the	Listener	sink	is	connected	and	registering	a	Talker	
Failed	attribute	then	set	msrp_failure_code	and	
msrp_failure_bridge_id	to	the	values	found	in	the	
attribute	and	flags.MSRP_FAILURE_VALID=1	

- Otherwise,	set	msrp_failure_code=0,	
msrp_failure_bridge_id=00:00:00:00:00:00:00:00	and	
flags.	MSRP_FAILURE_VALID	=0	

stream_vlan_id/	
flags.STREAM_VLAN_ID_VALID	

- If	the	Listener	sink	is	connected	and	registering,	set	
stream_vlan_id	to	the	value	found	in	the	registered	
Talker	attribute	and	set	
flags.STREAM_VLAN_ID_VALID=1	

- If	the	Listener	sink	is	connected	but	not	registering,	set	
stream_vlan_id	to	the	value	received	in	the	
CONNECT_TX_RESPONSE	message	from	the	Talker	and	
set	flags.STREAM_VLAN_ID_VALID=1	

- If	the	Listener	sink	is	disconnected,	set	stream_vlan_id=0	
and	flags.STREAM_VLAN_ID_VALID=0	

flags.CONNECTED	 1	if	the	Listener	sink	is	connected,	0	otherwise	
flags.CLASS_B	 - If	the	Listener	sink	is	connected	and	registering,	set	

flags.CLASS_B	to	1	if	the	registered	Talker	attribute	
indicates	the	stream	is	class	B,	0	if	it’s	class	A	

- If	the	Listener	sink	is	connected	but	not	registering,	set	
flags.CLASS_B	to	the	value	received	in	the	
CONNECT_TX_RESPONSE	message	from	the	Talker	

- If	the	Listener	sink	is	disconnected,	set	flags.CLASS_B=0	
flags.FAST_CONNECT	 - If	the	Listener	sink	is	connected	and	the	connection	was	

done	in	Fast	Connect	mode	then	set	
flags.FAST_CONNECT=1	

- If	the	Listener	sink	is	disconnected	but	is	currently	trying	
to	connect	to	a	Talker	source	in	Fast	Connect	mode	then	

14	
	

set	flags.FAST_CONNECT=1	
- Otherwise,	set	flags.FAST_CONNECT=0	

flags.SAVED_STATE	 1	if	the	Listener	implements	Fast	Connect	mode	for	this	sink,	0	
otherwise	

flags.STREAMING_WAIT	 1	if	the	Listener	sink	is	inactive,	0	otherwise	
flags.ENCRYPTED_PDU	 - If	the	Listener	sink	is	connected,	set	

flags.ENCRYPTED_PDU	to	the	value	received	in	the	
CONNECT_TX_RESPONSE	message	from	the	Talker	

- Otherwise,	set	flags.ENCRYPTED_PDU=0	
	
	
	

6.2.2. From	a	Talker	source	
	
The	following	table	describes	what	a	Talker	shall	reply	to	a	GET_STREAM_INFO	command	on	one	of	
its	OUTPUT_STREAM	descriptors:	
	
stream_format/	
flags.STREAM_FORMAT_VALID	

Return	the	currently	configured	stream	format	for	this	Talker	
source.	This	field	is	always	valid,	no	matter	whether	the	Talker	
source	is	connected	or	not.		
Always	set	flags.STREAM_FORMAT_VALID=1	

stream_id/	
flags.STREAM_ID_VALID	

- If	there	was	a	SET_STREAM_INFO	on	this	Talker	source	
with	flags.STREAM_ID_VALID=1,	set	stream_id	to	the	
stream	ID	that	was	set	and	flags.STREAM_ID_VALID=1	

- Otherwise,	if	the	Talker	source	is	connected,	set	
stream_id	to	the	stream	ID	chosen	by	the	Talker	for	the	
stream	generated	by	this	source	and	
flags.STREAM_ID_VALID=1	

- Otherwise,	set	stream_id=00:00:00:00:00:00:00:00	and	
flags.STREAM_ID_VALID=0	

msrp_accumulated_latency/	
flags.MSRP_ACC_LAT_VALID	

- If	the	Talker	source	is	disconnected	then	set	
msrp_accumulated_latency=0	and	
flags.MSRP_ACC_LAT_VALID=0	

- If	the	Talker	source	is	connected	and	there	was	no	
SET_STREAM_INFO	since	connection,	return	
msrp_accumulated_latency=2ms	(50ms	if	class	B)	and	
flags.MSRP_ACC_LAT_VALID=1	

- If	the	Talker	source	is	connected	and	there	was	a	
SET_STREAM_INFO	since	connection,	set	
msrp_accumulated_latency	to	the	value	received	in	the	
SET_STREAM_INFO	command	and	
flags.MSRP_ACC_LAT_VALID=1	

stream_dest_mac/	
flags.STREAM_DEST_MAC_VALID	

- If	there	was	a	SET_STREAM_INFO	on	this	Talker	source	
with	flags.STREAM_DEST_MAC_VALID=1	and	
stream_dest_mac	not	equal	to	00:00:00:00:00:00	and	
there	was	no	subsequent	SET_STREAM_INFO	with	
flags.STREAM_DEST_MAC_VALID=1	and	
stream_dest_mac=00:00:00:00:00:00	then	set	
stream_dest_mac	to	the	value	received	in	the	
SET_STREAM_INFO	command	and	
flags.STREAM_DEST_MAC_VALID=1	

15	
	

- Otherwise:	
o If	the	Talker	source	has	dynamically	allocated	a	

MAC	address	through	the	MAAP	protocol	(no	
matter	whether	the	source	is	connected	or	not)	
then	set	stream_dest_mac	to	this	dynamically	
allocated	MAC	address	and	
flags.STREAM_DEST_MAC_VALID=1	

o Otherwise,	set	
stream_dest_mac=00:00:00:00:00:00	and	
flags.STREAM_DEST_MAC_VALID=0	

msrp_failure_code/	
msrp_failure_bridge_id/	
flags.MSRP_FAILURE_VALID	

- If	the	Talker	source	is	disconnected	then	set	
msrp_failure_code=0,	
msrp_failure_bridge_id=00:00:00:00:00:00:00:00	and	
flags.MSRP_FAILURE_VALID=0	

- If	the	Talker	source	is	connected	and	there	was	no	
SET_STREAM_INFO	since	connection,	set	
msrp_failure_code=0,	
msrp_failure_bridge_id=00:00:00:00:00:00:00:00	and	
flags.MSRP_FAILURE_VALID=0	

- If	the	Talker	source	is	connected	and	there	was	a	
SET_STREAM_INFO	since	connection,	set	
msrp_failure_code	and	msrp_failure_bridge_id	to	the	
values	received	in	the	SET_STREAM_INFO	message	and	
set	flags.MSRP_FAILURE_VALID=1	

stream_vlan_id/	
flags.STREAM_VLAN_ID_VALID	

- If	the	Talker	source	is	connected	then	set	stream_vlan_id	
to	the	VLAN	ID	used	for	the	generated	stream	and	
flags.STREAM_VLAN_ID_VALID=1	

- Otherwise,	set	stream_vlan_id=0	and	
flags.STREAM_VLAN_ID_VALID=0	

Note:	If	there	was	a	SET_STREAM_INFO	on	this	Talker	source	
with	flags.STREAM_VLAN_ID_VALID=1	and	stream_vlan_id	
not	equal	to	0	and	there	was	no	subsequent	SET_STREAM_INFO	
with	flags.STREAM_VLAN_ID_VALID=1	and	stream_vlan_id=0	
then	the	Talker	uses	the	supplied	VLAN	ID	when	it	goes	from	
disconnected	to	connected	state.	Otherwise,	it	uses	the	default	
VLAN	ID	defined	by	the	SRP	domain	for	the	traffic	class	of	the	
stream.	

flags.CONNECTED	 1	if	the	Talker	source	is	connected,	0	otherwise	
flags.CLASS_B	 - If	the	Talker	source	is	connected,	set	flags.CLASS_B	to	1	if	

the	stream	is	Class	B,	0	if	it’s	Class	A	
- Otherwise,	set	flags.CLASS_B=0	

flags.FAST_CONNECT	 Always	0	
flags.SAVED_STATE	 Always	0	
flags.STREAMING_WAIT	 1	if	the	Talker	source	is	inactive,	0	otherwise	
flags.ENCRYPTED_PDU	 - If	the	Talker	source	is	connected,	set	

flags.ENCRYPTED_PDU	to	1	if	the	Talker	is	configured	to	
use	encrypted	PDUs	for	this	stream,	0	otherwise	

- Otherwise,	set	flags.ENCRYPTED_PDU=0	
	
	

16	
	

6.3. SET_STREAM_INFO	command	
	
Note:	the	fields	of	the	SET_STREAM_INFO	response	are	the	same	as	those	of	the	GET_STREAM_INFO	
response.	
	

6.3.1. To	a	Listener	sink	
	
The	following	table	describes	how	a	Controller	shall	build	a	SET_STREAM_INFO	command	targeted	to	
a	STREAM_INPUT	descriptor	of	a	Listener:	
	
stream_format/	
flags.STREAM_FORMAT_VALID	

- If	the	Controller	wants	to	change	the	current	stream	
format	of	the	Listener	sink,	it	sets	stream_format	to	the	
new	format	and	flags.STREAM_FORMAT_VALID=1	

- Otherwise,	it	sets	stream_format=0	and	
flags.STREAM_FORMAT_VALID=0	

Note:	Changing	the	stream	format	of	a	Listener	sink	is	possible	
only	when	the	sink	is	inactive.	

stream_id/	
flags.STREAM_ID_VALID	

Always	00:00:00:00:00:00:00:00/0	
Actually	it	doesn’t	make	sense	to	manually	set	the	stream	ID	of	a	
Listener	sink.	The	Listener	always	uses	the	value	supplied	by	the	
Talker	in	the	CONNECT_TX_RESPONSE	message.	

msrp_accumulated_latency/	
flags.MSRP_ACC_LAT_VALID	

Always	0/0	

stream_dest_mac/	
flags.STREAM_DEST_MAC_VALID	

Always	00:00:00:00:00:00/0	
Actually	it	doesn’t	make	sense	to	manually	set	the	stream	
destination	MAC	address	of	a	Listener	sink.	The	Listener	always	
uses	the	value	found	in	the	MRP	Talker	attribute	or	supplied	by	
the	Talker	in	the	CONNECT_TX_RESPONSE	message.	

msrp_failure_code/	
msrp_failure_bridge_id/	
flags.MSRP_FAILURE_VALID	

Always	0/00:00:00:00:00:00:00:00/0	

stream_vlan_id/	
flags.STREAM_VLAN_ID_VALID	

Always	0/0	
Actually	it	doesn’t	make	sense	to	manually	set	the	stream	VLAN	
ID	of	a	Listener	sink.	The	Listener	always	uses	the	value	found	in	
the	MRP	Talker	attribute	or	supplied	by	the	Talker	in	the	
CONNECT_TX_RESPONSE	message.	

flags.CONNECTED	 Always	0	
flags.CLASS_B	 Always	0	
flags.FAST_CONNECT	 Always	0	
flags.SAVED_STATE	 Always	0	
flags.STREAMING_WAIT	 Always	0	
flags.ENCRYPTED_PDU	 Always	0	
	
The	table	above	shows	that	the	SET_STREAM_INFO	command	has	a	very	limited	interest	for	a	Listener	
sink	and	should	never	be	used	by	a	Controller.	To	change	the	stream	format	of	a	Listener	sink,	the	
Controller	should	use	the	simpler	SET_STREAM_FORMAT	command	instead.	
	
	

17	
	

6.3.2. To	a	Talker	source	
	
The	following	table	describes	how	a	Controller	shall	build	a	SET_STREAM_INFO	command	targeted	to	
a	STREAM_OUTPUT	descriptor	of	a	Talker:	
	
stream_format/	
flags.STREAM_FORMAT_VALID	

- If	the	Controller	wants	to	change	the	current	stream	
format	of	the	Talker	source,	it	sets	stream_format	to	the	
new	format	and	flags.STREAM_FORMAT_VALID=1	

- Otherwise,	it	sets	stream_format=0	and	
flags.STREAM_FORMAT_VALID=0	

Note:	changing	the	stream	format	of	a	Talker	source	is	possible	
only	when	the	source	is	inactive.	

stream_id/	
flags.STREAM_ID_VALID	

- If	the	Controller	wants	to	force	the	Talker	source	to	use	a	
specific	stream	ID	at	next	connection	then	it	sets	
stream_id	to	the	wanted	stream	ID	and	
flags.STREAM_ID_VALID=1	

- Otherwise,	it	sets	stream_id=00:00:00:00:00:00:00:00	
and	flags.STREAM_ID_VALID=0	

Notes:	1)	Changing	the	stream	ID	of	a	Talker	source	is	possible	
only	when	the	source	is	disconnected	
2)	Once	a	Controller	has	set	manually	a	stream	ID	in	a	Talker	
source	through	a	SET_STREAM_INFO	command,	there	is	no	way	
to	restore	the	default	behaviour	(automatic	choice	from	the	
Talker)	

msrp_accumulated_latency/	
flags.MSRP_ACC_LAT_VALID	

- If	the	Controller	wants	to	force	the	Talker	source	to	use	a	
stream	latency	lower	than	the	default	value	(2ms	for	
Class	A	streams	and	50ms	for	Class	B	streams)	then	it	
sets	msrp_accumulated_latency	to	the	wanted	latency	
and	flags.MSRP_ACC_LAT_VALID=1	

- Otherwise,	it	sets	msrp_accumulated_latency=0	and	
flags.MSRP_ACC_LAT_VALID=0	

Notes:	1)	changing	the	stream	latency	of	a	Talker	source	is	
possible	only	when	the	source	is	connected	and	inactive	
2)	The	supplied	latency	value	shall	be	lower	than	the	default	
value	
3)	The	normal	operation	is	that	the	Controller	first	connects	all	
the	Listeners	sinks	to	the	Talker	source,	then	retrieves	all	the	
msrp_accumulated_latency	of	all	the	Listener	sinks	thanks	to	
GET_STREAM_INFO	commands,	and	finally	sets	the	latency	of	
the	Talker	source	to	the	maximum	latency	got	from	the	Listener	
sinks	

stream_dest_mac/	
flags.STREAM_DEST_MAC_VALID	

- If	the	Controller	wants	to	force	the	Talker	source	to	use	a	
specific	destination	MAC	address	for	its	stream	then	it	
sets	stream_dest_mac	to	the	wanted	MAC	address	and	
flags.STREAM_DEST_MAC_VALID=1	

- If	the	Controller	wants	that	the	Talker	source	dynamically	
allocated	a	destination	MAC	address	(through	MAAP)	for	
its	stream	then	it	sets	
stream_dest_mac=00:00:00:00:00:00	and	
flags.STREAM_DEST_MAC_VALID=1	

- If	the	Controller	doesn’t	want	to	change	anything	
regarding	the	destination	MAC	address,	it	sets	

18	
	

stream_dest_mac=00:00:00:00:00:00	and	
flags.STREAM_DEST_MAC_VALID=0	

Note:	the	Controller	is	not	allowed	to	change	the	destination	
MAC	address	of	a	Talker	source	which	is	active.	It	is	allowed	to	
change	the	destination	MAC	address	of	a	Talker	source	while	the	
source	is	connected	and	inactive.	But	this	is	not	recommended	
because	due	to	SRP	constraints,	the	Talker	may	have	to	
withdraw	its	Talker	attribute,	wait	for	a	quite	long	time	(up	to	
30	seconds)	and	then	declare	a	new	Talker	attribute.	Moreover,	
the	Listener	will	have	to	properly	detect	that	the	destination	
MAC	address	of	the	stream	has	changed	(the	new	MAC	address	
will	be	reported	by	the	SRP	stack).	

msrp_failure_code/	
msrp_failure_bridge_id/	
flags.MSRP_FAILURE_VALID	

- If	the	Controller	wants	to	inform	the	Talker	source	about	
the	status	of	its	stream	on	the	Listener	sink(s)	side	then	it	
sets	msrp_failure_code	to	the	most	pertinent	
msrp_failure_code	it	has	retrieved	from	the	Listeners	
with	GET_STREAM_INFO	commands,	and	
msrp_failure_bridge_id	to	the	related	
msrp_failure_bridge_id	of	the	chosen	Listener	sink.	It	also	
sets	flags.MSRP_FAILURE_VALID=1	

- Otherwise,	the	Controller	sets	msrp_failure_code=0,	
msrp_failure_bridge_id=00:00:00:00:00:00:00:00	and	
flags.MSRP_FAILURE_VALID=0	

Note:	this	setting	is	informational	only	and	can	be	used	only	on	
connected	sources.	

stream_vlan_id/	
flags.STREAM_VLAN_ID_VALID	

- If	the	Controller	wants	to	force	the	Talker	source	to	use	a	
specific	VLAN	ID	at	next	connection	then	it	sets	
stream_vlan_id	to	the	wanted	VLAN	ID	and	
flags.STREAM_VLAN_ID_VALID=1	

- If	the	Controller	wants	that	the	Talker	source	uses	the	
default	VLAN	ID	associated	with	the	SR	traffic	class	of	the	
stream	at	next	connection	then	it	sets	stream_vlan_id=0	
and	flags.STREAM_VLAN_ID_VALID=1	

- If	the	Controller	doesn’t	want	to	change	anything	
regarding	the	VLAN	ID,	it	sets	stream_vlan_id=0	and	
flags.STREAM_VLAN_ID_VALID=0	

Note:	changing	the	stream	ID	of	a	Talker	source	is	possible	only	
when	the	source	is	disconnected.	

flags.CONNECTED	 Always	0	
flags.CLASS_B	 Always	0	
flags.FAST_CONNECT	 Always	0	
flags.SAVED_STATE	 Always	0	
flags.STREAMING_WAIT	 Always	0	
flags.ENCRYPTED_PDU	 Always	0	
	
	
	
	
	

19	
	

6.4. SET_ASSOCIATION_ID	and	GET_ASSOCIATION_ID	

6.4.1. SET_ASSOCIATION_ID	
	
An	AVDECC	Entitiy	implementing	the	Association	ID	feature	(bit	ASSOCIATION_ID_SUPPORTED	of	the	
entity_capabilities	field	set)	shall	implement	the	SET_ASSOCIATION_ID	command.	This	command	is	
used	by	a	controller	to	modify	the	association_id	of	the	Entity.	
	
By	default,	until	a	valid	Association	ID	has	been	assigned	to	an	entity	through	the	
SET_ASSOCIATION_ID	command,	an	AVDECC	Entity	shall	set	association_id=00:00:00:00:00:00:00:00	
in	its	ENTITY_AVAILABLE	ADPDU,	its	ENTITY	descriptor	and	its	GET_ASSOCIATION_ID	response.		
After	a	successful	SET_ASSOCIATION_ID	command,	the	Entity	shall	save	and	advertise	the	new	
association_id,	and	also	set	the	bit	ASSOCIATION_ID_VALID	of	the	entity_capabilities	field.	An	
AVDECC	Entity	may	save	the	last	set	value	so	that	it	is	restored	after	each	reboot	of	the	Entity.	
	
After	a	successful	SET_ASSOCIATION_ID	command,	if	the	Association	ID	is	changed,	an	AVDECC	Entity	
may	immediately	send:	

- an	ENTITY_AVAILABLE	ADPDU,	
- a	WRITE_DESCRIPTOR	unsolicited	notification	(on	the	ENTITY	descriptor)	to	every	registered	

controller,	
- a	SET_ASSOCIATION_ID	unsolicited	notification	to	every	registered	controller	

	

6.4.2. GET_ASSOCIATION_ID	
	
This	command	is	used	by	a	controller	to	retrieve	the	current	Association	ID	of	an	AVDECC	Entity.	It	is	
implemented	by	an	AVDECC	Entity	if,	and	only	if,	the	bit	ASSOCIATION_ID_SUPPORTED	of	the	
entity_capabilities	field	is	set.	
	
If	no	valid	Association	ID	has	been	assigned	to	the	entity	yet	(that	is	if	the	bit	ASSOCIATION_ID_VALID	
is	cleared)	then	the	Entity	shall	return	00:00:00:00:00:00:00:00.	Otherwise,	it	shall	return	the	current	
Association	ID.	
	
	
	

6.5. SET_CLOCK_SOURCE	and	GET_CLOCK_SOURCE	

6.5.1. SET_CLOCK_SOURCE	
	
If	an	AVDECC	Entity	allows	the	user	to	manually	select	the	clock	source	of	a	clock	domain,	it	shall	
implement	the	SET_CLOCK_SOURCE	command.	Otherwise,	it	shall	not	implement	the	
SET_CLOCK_SOURCE	command	(this	is	typically	the	case	if	the	AVDECC	Entity	automatically	selects	
the	clock	source	it	wants	to	use	depending	on	the	state	of	an	internal	PLL).	
	
In	any	case,	if	the	AVDECC	Entity	implements	unsolicited	notifications	and	if	the	current	clock	source	
is	changed,	it	may	send	an	unsolicited	SET_CLOCK_SOURCE	response	to	every	registered	controller.		
	
The	SET_CLOCK_SOURCE	enables	the	user	to	manually	select	the	clock	source	of	a	clock	domain.	

20	
	

6.5.2. GET_CLOCK_SOURCE	
	
The	GET_CLOCK_SOURCE	command	is	used	to	retrieve	the	clock	source	which	is	currently	used	by	a	
clock	domain	of	an	AVDECC	Entity.	
	
	
	

