
IEEE 1722.1

2016-03-31

AVDECC Clarifications 

Marc Illouz
marc.illouz@l-acoustics.com

mailto:marc.illouz@l-acoustics.com


AVDECC clarifications

Table of contents 

1 - Presentation of L-Acoustics
2 - Examples of issues with AVDECC

2.1 - Inconsistency
2.2 - Ambiguity
2.3 - Lack

3 - Proposal of an « AVDECC clarification »
4 - List of very important questions

4.1 - ACMP 
4.2 - AEM commands
4.3 - AEM model



AVDECC clarifications

1 - Presentation of L-Acoustics

▪ Major actor in the Pro Audio industry

o Founded in 1984

o Inventor of the WST in 1992 

o Covers big events over the world 

▪ R&D

o Fundamental acoustics

o Signal processing 

o Electronics 

o AVB

▪ Today, we miss confidence in the interoperability of our AVDECC implementation



AVDECC clarifications

2.1 - Example of inconsistency: connection count field 

▪ Definition of the « connection_count » field:

8.2.1.15 connection_count field
The connection_count field is used by the state commands to return the number of connections an AVDECC Talker thinks it has on its 
Stream source […]

▪ Definition of the « ListenerStreamInfo » structure:

8.2.2.2.2 ListenerStreamInfo 
[…] - connected: 1 bit […] 

Function called by the Talker on a CONNECT_TX_COMMAND: 

8.2.2.6.2.2 connectTalker(command)
[…] The connectTalker function returns a response structure of type ACMPCommandResponse filled with the contents of the command 
parameter, with the stream_id, stream_dest_mac, stream_vlan_id and connection_count field set to the values for the AVDECC 
TalkerStreamInfos entry associated Stream. […] 

Function called by the Listener on a GET_RX_STATE command:

8.2.2.5.2.10 getState(command)
The getState function returns a response structure of type ACMPCommandResponse filled with the contents of the command parameter, 
with the stream_id, stream_dest_mac, stream_vlan_id, connection_count, flags, talker_entity_id, and talker_unique_id fields set to the 
values for the AVDECC ListenerStreamInfos entry associated with the Stream identifier by the command structure. […] 

Reference: AVDECC Clarifications – Part 1 ACMP, section 3.5 GET_RX_STATE_COMMAND and 
GET_RX_STATE_RESPONSE



AVDECC clarifications

2.2 - Example of ambiguity: SAVED_STATE flag 

Definition of the SAVED_STATE field:

8.2.1.17 flags field
[…] SAVED_STATE: Connection has saved state (used in Get State only) […] 
Reference to SAVED_STATE in the “Fast Connect” description:

8.2.2.1.1 Fast Connect
Fast connect is used in rapid boot mode when the AVDECC Listener has saved state, indicating that its input Stream sink is connected to a 
specific Entity ID and unique identifier. […] 
Reference to SAVED_STATE in the “Controller Disconnect” description:

8.2.2.1.4 Controller Disconnect
Controller disconnect mode is the normal of operation for tearing down a connection. In this mode, the AVDECC Controller shall send a 
DISCONNECT_RX_COMMAND to the AVDECC Listener. The AVDECC Listener removes any saved state and tears down the Stream. […] 

• Interpretation 1: the Listener sink is currently connected
• Interpretation 2: the Listener sink is currently connected and has saved the connection info (talker entity id, talker 

unique id, controller id) for use in a future Fast Connect.
• Interpretation 3: the Listener is capable of performing Fast Connect (whatever the current state of the connection) 
When a sink is currently attempting “Fast Connect”: is it connected? Does it have saved state?

Reference: AVDECC Clarifications – Part 1 ACMP, section 3.5 GET_RX_STATE_COMMAND and 
GET_RX_STATE_RESPONSE



AVDECC clarifications

2.3 - Example of lack: half open connection 

The Talker is connected, the Listener is not connected. The Controller cannot disconnect the Talker (a 
DISCONNECT_RX_COMMAND to the Listener will raise a NOT_CONNECTED error).

Similar scenario: after a successful connection, the Listener is removed from the network. 

Reference: AVDECC Clarifications – Part 1 ACMP, sections “4.5 Connection succeeded on Talker and failed on Listener” 
and “4.7 Talker connected to a ghost Listener”.

Controller TalkerListener

CONNECT_RX_COMMAND

CONNECT_TX_COMMAND

CONNECT_TX_RESPONSE

(Status = Success)

CONNECT_RX_RESPONSE

(Status ≠ Success)

CONNECT_LISTENER
Error

CONNECT_TALKER
Success



AVDECC clarifications

3 - Proposal of an “AVDECC clarification” 

How:

• Make 3 documents : ACMP, AEM commands, AEM descriptors

• Build them incrementally

• Describe as precisely as possible the tricky points of the specification. Might contain errors in initial revisions

• Clearly mention the imprecisions and lacks of the IEEE 1722.1-2013 standard, so that everybody is aware of them

When:

• As soon as possible; several devices are AVB-ready but not fully AVDECC-compatible

• Before, or in parallel of, the new revision of the 1722.1 specification

Who:

• I can be in charge of writing the documents

• I will need support from the authors of IEEE 1722.1-2013 + experience and feedback from the implementors of 

AVDECC entities



AVDECC clarifications

4.1 - List of very important questions: ACMP (1/2)

• Clarifications of all the fields of the messages, especially:

o “connection_count”

o “flags” (CLASS_B, FAST_CONNECT, SAVED_STATE, STREAMING_WAIT, SUPPORTS_ENCRYPTED, 

ENCRYPTED_PDU)

• Connection/disconnection command accepted if locked/acquired by another controller?

• Is there a way to disable “Fast Connect” capability of a Listener?

• Is there a way to request a Listener to stop trying to connect in “Fast Connect” mode after a reboot (other than 

disconnecting it from its talker)?

• While trying to connect in “Fast Connect” mode, should the listener report that its sink is connected or not?

• If the “connectListener” function of the Listener state machine returns an error, should the Listener send a 

DISCONNECT_TX_COMMAND to the Talker (it is not conform to the specification, but seems more logical)?



AVDECC clarifications

4.1 - List of very important questions: ACMP (2/2)

• Never use the TALKER_NO_BANDWIDTH error code?

• Talker shall refuse a connection if MAAP failed (TALKER_DEST_MAC_FAIL error code)? What if MAAP succeeds but 

the allocated range is lost after connection has been established? Is the Talker allowed to allocate a new dest_adr 

for the connected source?

• On the Listener, how to behave if SRP parameters different from ACMP parameters (dest_adr, vlan_id, class)?

• Does the “Unique Id” part of the Stream ID chosen by the Talker have to be equal to the “Unique Id” of the ACMP 

source?



AVDECC clarifications

4.2 - List of very important questions: AEM commands 

• SET_SAMPLING_RATE command is it allowed if one of the sinks/sources of the entity is active? connected?

• SET_STREAM_FORMAT command is it allowed if the source is connected?

• SET_STREAM_INFO command to a Listener sink: no interest?

• SET_STREAM_INFO command to a Talker source:

o stream_id: allowed only if source not connected? Is it possible to return to default behavior after setting the 

stream_id?

o msrp_accumulated_latency: not taken into account if source not connected? 

o stream_dest_mac: allowed if source already connected?

o stream_vlan_id: allowed if source already connected?

o CLASS_B: is it possible for the controller to select the SR Class used by a Talker source? Allowed if source 

already connected?

• GET_ASSOCIATION_ID: return 0x00000000 or 0xFFFFFFFF if association_id not valid yet?

• SET_CLOCK_SOURCE: is it ok not to implement this command? (if the entity automatically selects its clock source)



AVDECC clarifications

4.3 - List of very important questions: AEM descriptors 

• STREAM_INPUT: how to advertise that a Listener supports any number of channels for its input streams? 

• CLOCK_SOURCE: “clock_source_identifier” can be modified by a WRITE_DESCRIPTOR? What’s the meaning of 

“clock_source_flags” (STREAM_ID, LOCAL_ID)?


