IEEE 1722.1

2016-03-31

AVDECC Clarifications

Marc lllouz
marc.illouz@I-acoustics.com

mailto:marc.illouz@l-acoustics.com

B
AVDECC clarifications

Table of contents

1 - Presentation of L-Acoustics
2 - Examples of issues with AVDECC
2.1 - Inconsistency
2.2 - Ambiguity
2.3 - Lack
3 - Proposal of an « AVDECC clarification »
4 - List of very important questions
4.1 - ACMP
4.2 - AEM commands
4.3 - AEM model

B AVDECC clarifications

1 - Presentation of L-Acoustics
= Major actor in the Pro Audio industry
© Founded in 1984
o Inventor of the WST in 1992
o Covers big events over the world
= R&D
o Fundamental acoustics
o Signal processing
© Electronics
o AVB

= Today, we miss confidence in the interoperability of our AVDECC implementation

AVDECC clarifications

2.1 - Example of inconsistency: connection count field

= Definition of the « connection_count » field:

8.2.1.15 connection_count field
The connection_count field is used by the state commands to return the number of connections an AVDECC Talker thinks it has on its
Stream source [...]

= Definition of the « ListenerStreamInfo » structure:

8.2.2.2.2 ListenerStreamInfo
[...] - connected: 1 bit [...]
Function called by the Talker on a CONNECT_TX_COMMAND:

8.2.2.6.2.2 connectTalker(command)

[...] The connectTalker function returns a response structure of type ACMPCommandResponse filled with the contents of the command
parameter, with the stream_.id, stream_dest_mac, stream_vlan_id and connection_count field set to the values for the AVDECC
TalkerStreamInfos entry associated Stream. [...]

Function called by the Listener on a GET_RX_STATE command:

8.2.2.5.2.10 getState(command)

The getState function returns a response structure of type ACMPCommandResponse filled with the contents of the command parameter,
with the stream_id, stream_dest_mac, stream_vlan_id, connection_count, flags, talker_entity_id, and talker_unique_id fields set to the
values for the AVDECC ListenerStreamInfos entry associated with the Stream identifier by the command structure. [...]

Reference: AVDECC Clarifications — Part 1 ACMP, section 3.5 GET_RX_STATE_COMMAND and
GET _RX _STATE _RESPONSE

AVDECC clarifications

2.2 - Example of ambiguity: SAVED_STATE flag

Definition of the SAVED STATE field:

8.2.1.17 flags field
[...] SAVED_STATE: Connection has saved state (used in Get State only) [...]

Reference to SAVED_STATE in the “Fast Connect” description:

8.2.2.1.1 Fast Connect

Fast connect is used in rapid boot mode when the AVDECC Listener has saved state, indicating that its input Stream sink is connected to a
specific Entity ID and unique identifier. [...]

Reference to SAVED_STATE in the “Controller Disconnect” description:

8.2.2.1.4 Controller Disconnect

Controller disconnect mode is the normal of operation for tearing down a connection. In this mode, the AVDECC Controller shall send a
DISCONNECT_RX_COMMAND to the AVDECC Listener. The AVDECC Listener removes any saved state and tears down the Stream. [...]

* Interpretation 1: the Listener sink is currently connected

- Interpretation 2: the Listener sink is currently connected and has saved the connection info (talker entity id, talker
unique id, controller id) for use in a future Fast Connect.

* Interpretation 3: the Listener is capable of performing Fast Connect (whatever the current state of the connection)
When a sink is currently attempting “Fast Connect”: is it connected? Does it have saved state?

Reference: AVDECC Clarifications — Part 1 ACMP, section 3.5 GET_RX_STATE_COMMAND and
GET RX STATE RESPONSE

N

AVDECC clarifications

2.3 - Example of lack: half open connection

Controller Listener Talker

CONNECT_RX_COMMAND

CONNECT_RX_RESPONSE

<

(Status # Success)

CONNECT_TX_COMMAND

CONNECT_TX_RESPONSE

<

B

(Status = Success)

CONNECT_LISTENER
ks Error

CONNECT_TALKER
L Success

The Talker is connected, the Listener is not connected. The Controller cannot disconnect the Talker (a
DISCONNECT_RX_COMMAND to the Listener will raise a NOT_CONNECTED error).

Similar scenario: after a successful connection, the Listener is removed from the network.

Reference: AVDECC Clarifications — Part 1 ACMP, sections "4.5 Connection succeeded on Talker and failed on Listener”

and “4.7 Talker connected to a ghost Listener”,

AVDECC clarifications

3 - Proposal of an "AVDECC clarification”
How:
* Make 3 documents : ACMP, AEM commands, AEM descriptors

* Build them incrementally
- Describe as precisely as possible the tricky points of the specification. Might contain errors in initial revisions

+ Clearly mention the imprecisions and lacks of the IEEE 1722.1-2013 standard, so that everybody is aware of them

When:
* As soon as possible; several devices are AVB-ready but not fully AVDECC-compatible

* Before, or in parallel of, the new revision of the 1722.1 specification

Who:
« I can be in charge of writing the documents

« I will need support from the authors of IEEE 1722.1-2013 + experience and feedback from the implementors of

AVDECC entities

N

AVDECC clarifications

4.1 - List of very important questions: ACMP (1/2)

Clarifications of all the fields of the messages, especially:
o “connection_count”

o “flags” (CLASS_B, FAST_CONNECT, SAVED_STATE, STREAMING_WAIT, SUPPORTS_ENCRYPTED,
ENCRYPTED_PDU)

Connection/disconnection command accepted if locked/acquired by another controller?
Is there a way to disable “Fast Connect” capability of a Listener?

Is there a way to request a Listener to stop trying to connect in “Fast Connect” mode after a reboot (other than
disconnecting it from its talker)?

While trying to connect in “Fast Connect” mode, should the listener report that its sink is connected or not?

If the “connectListener” function of the Listener state machine returns an error, should the Listener send a
DISCONNECT_TX_COMMAND to the Talker (it is not conform to the specification, but seems more logical)?

N

AVDECC clarifications

4.1 - List of very important questions: ACMP (2/2)

Never use the TALKER_NO_ BANDWIDTH error code?
Talker shall refuse a connection if MAAP failed (TALKER_DEST_MAC_FAIL error code)? What if MAAP succeeds but

the allocated range is lost after connection has been established? Is the Talker allowed to allocate a new dest_adr
for the connected source?

On the Listener, how to behave if SRP parameters different from ACMP parameters (dest_adr, vlan_id, class)?
Does the “Unique Id” part of the Stream ID chosen by the Talker have to be equal to the “Unique Id” of the ACMP

source?

B AVDECC clarifications

4.2 - List of very important questions: AEM commands

 SET_SAMPLING_RATE command is it allowed if one of the sinks/sources of the entity is active? connected?
* SET_STREAM_FORMAT command is it allowed if the source is connected?

* SET_STREAM_INFO command to a Listener sink: no interest?

« SET_STREAM_INFO command to a Talker source:

o stream_id: allowed only if source not connected? Is it possible to return to default behavior after setting the

stream_.id?
o msrp_accumulated_latency: not taken into account if source not connected?
o stream_dest_mac: allowed if source already connected?
o stream_vlan_id: allowed if source already connected?

o CLASS_B: is it possible for the controller to select the SR Class used by a Talker source? Allowed if source

already connected?

GET_ASSOCIATION_ID: return 0x00000000 or OXFFFFFFFF if association_id not valid yet?

SET_CLOCK_SOURCE: is it ok not to implement this command? (if the entity automatically selects its clock source)

D AVDECC clarifications

4.3 - List of very important questions: AEM descriptors

STREAM_INPUT: how to advertise that a Listener supports any number of channels for its input streams?

* CLOCK_SOURCE: “clock_source_identifier” can be modified by a WRITE_DESCRIPTOR? What's the meaning of
“clock_source_flags” (STREAM_ID, LOCAL_ID)?

