Temporally Redundant Audio Format

Ashley Butterworth
Apple Inc

The Problem

e« Some network mediums (such as WiFi) don’t provide the same level of packet
delivery reliability as wired Ethernet does.

e |[n particular there are times when sequences of packets may be lost due to
Interference, traffic collisions, or other inaccessibility of the medium

e The streaming model that we use in 1722 doesn’t handle this well, and we
typically don’t want to use the retransmission methods provided by the network
medium.

A solution

e One solution to the problem is to send 2 copies of the stream with a time offset
between the packets of the streams where the time offset between them is large
enough to overcome the largest expected packet dropout period.

e This however requires 2 packetizers and 2 depacketizers and uses extra
bandwidth for the extra headers.

e The proposal Is to put both sets of samples in the same packet.

e This i1s not for ultra-low latency applications, the latency has to be at least large
enouah to cover the expected dropout period + max transit time

How it works

« Packet will look a lot like AAF with extra redundant audio payload data

- If possible would like to make it “compatible” with a AAF listener by ignoring the
extra data

e Frame Conversion Time (see Fig 6 1722-2016) contains the Max Allowed Dropout
Time (MADT)

e Redundant audio data will have a “presentation time” that is offset from the

stream presentation time by MADT (redundant data presentation time =
presentation time + MADT)

- This means that the redundant audio is delivered _before_ the primary audio
- MADT is communicated out of band by 1/722.1

Why redundant data is in the future

« Max Transit Time Is already well defined by 1722-2016, and it's a good definition!

« We can keep the Max Transit Time independent of the Max Allowed Drop Time

e By not changing the primary audio the packet could potentially be delivered to a
well constructed AAF receiver and played back aligned with the redundant audio
receiver

Packet Format

subtype data

Stream ID

AVTP Time

Format Specific

Packet info

Primary Audio
payload

24+ primary_audio_data

00
04
08
12
16
20
24

length

Redundant Audio
payload

1

1

2 3 4 5 6 7 8 9 0

1

2

2 3 4 5 6 7 8 9 0 1

3
2 3 4 5 6 7 8 9 0

1

|sub’tlype| o SV v§rsio|n mr| rsv |tv ‘sequence_num o relservled o tu
I I
stream_id
I I
I I I I I I I I I thpI_tlrrI]eStIampl I I I I I I I I I I I I
|forrlnat o - nsro rsv | chlannlels_per__frarrlle | | Ilait_dlepth |
stlrearp_dellta_Ienglth (olctetls) | sV, sp ooevt qeselrveq

primary_audio_data_payload

3 5
CC

C

redundant_audio_data_payload

3 5
C(

Example

« 48kHz, packet every 125us (6 samples per packet), 10ms MADT
e« Samples are numbered O, 1, 2, 3, ...
e First packet contains samples
-primary_audio_data: 0,1, 2, 3, 4, 5
-redundant_audio_data: 480, 481, 482, 483, 484, 485
e Second packet contains samples
- primary_audio_data: 6, 7, 8, 9, 10, 11
-redundant_audio_data: 486, 487, 488, 489, 490, 491

Example
Continued...

e 90th packet contains samples
- primary_audio_data: 480, 481, 482, 483, 484, 485
-redundant_audio_data: 960, 961, 962, 963, 964, 965
« 100th packet contains samples
- primary_audio_data: 486, 487, 488, 489, 490, 491
-redundant_audio_data: 966, 96/, 968, 969, 970, 9/1

Questions and comments

