AVB L3 Transport SG

Aidan Williams

<aidan.williams@audinate.com>

Agenda

- Admin
- Problem statement
- Requirements
- Existing protocols
- Discussion
- Next steps

Admin

- AVB Transport Protocol Study Group
 - Is now a "Working Group"
 - Robert has asked for a new SG:
 - "AVB L3 Transport Study Group"
 - Work on PAR => WG
- Minutes
 - Volunteer for today needed...
- Editor
 - TBD, contact me if you're interested

Goals for today

- Start discussion on:
 - Clearly defining the problem we're trying to solve
 - Identifying the requirements for AVB L3 transport
 - Evaluating various IP protocols that could be used in this space
 - Identifying the work that needs to be done

Problem Statement (1)

Next Generation AV Connector

Clean and Simple

July 2004 IEEE 802.3 CFI 22
Portland July 2004

Problem Statement (2)

- All those sockets are used to make connections between boxes
 - Replace them with "virtual sockets" and "virtual wires" running over a network
- Various media sources
 - DVD players, STBs, Computers, Hi Fi gear
- Various sinks / playout devices
 - Loudspeakers, displays, processors (sink+src)
- Our task: design an IP network system to get digital signals from the sources to the sinks
 - Time aligned, rate controlled, high quality transport
 - At least as easy to use as plugging in a cable!

Problem Statement (3)

- Some things that AVB L3 TP is not.
 - Transparent bridging of 1394 over IP
 - Exploit existing IETF protocols (e.g. RTP) as much as possible, analogous to L2-TP use of 61883
 - A file transfer protocol
 - Support analog inputs, "live" signals (i.e. not pre-recorded)
 - Finding media on boxes in a home network
 - E.g. recorded TV, movie files, MP3 files, etc
 - Remote control for devices
 - In a Hi-Fi, the copper connections between the devices exist before you hit the play button on your remote control
 - A remote control *might* cause network connections to be set up, but that shouldn't be assumed
 - Need to avoid going too far up the stack

Problem Statement (4)

- Necessary network pieces:
 - High quality clock sync
 - QoS: admission control, traffic shaping
 - Automatic management of IP network details
 - Zeroconf: Addressing, mDNS, etc
 - Discovery of "virtual sockets"
 - Connection management for "virtual wires"
 - Media transport mappings

Requirements (1)

- "L3 Transport" implies the Internet Protocol suite
- Support simple, hardware-oriented implementations
 - E.g. chips
 - UDP/IP is easier to handle in hardware than TCP
 - Discovery and connection management should be simple to implement, not requiring TCP
- Multicast transport
 - UDP, by definition
- Unicast transport
 - Routable, many networks don't support multicast routing
 - Lots of signals are point to point
 - Unicast works a *lot* better on some link layers than multicast (e.g. wireless)

Requirements (2)

- Re-use as much as possible
 - Lots of media transport mappings exist in the RTP world
 - The wheel does not need to be re-invented...
- Provide a transition story
 - Today's networks are largely IP and don't support the various AVB services
 - How do they migrate over time to support AVB services?
 - Can we usefully operate in a degraded mode on a non-AVB network?
 - What about networks with some AVB features, but not all?
- Support un-managed networks
 - Plug and play operation, like L2 bridges

Requirements (3)

- Scale to larger, managed networks
 - Avoid designing-in arbitrary limitations
 - E.g. a maximum supported end-to-end latency
 - Support DHCP address management, DNS
 - This will probably used by home networks too
 - Support centralised management of discovery and connection setup
 - Co-exist with things like firewalls

Existing Protocols (RTP 1)

- RTP consists of several pieces
 - RTP Data Transfer Protocol
 - Basic transport protocol header
 - Source time-stamping rather than presentation time
 - RTP Control Protocol (RTCP)
 - Sender relates media clock to reference clock
 - A shared reference clock is already available in AVB
 - Still need to send RTCP for non-AVB receivers
 - Receivers report quality
 - Session Description Protocol (SDP)
 - Essential information for the RTP session
 - Mime type => RTP packet payload type

Existing Protocols (RTP 2)

- Control protocols
 - RTSP stop/start/pause, usually prerecorded media
 - Interactive connection setup
 - SIP, H.323, ...
- "RTP Profiles" map various media formats to RTP packets

Existing Protocols (RTP 3)

Some RTP Profiles:

Media Type	RTP Profile
16/24 bit LPCM Audio	RFC3190, RFC3351
RTP Payload Format for DV (IEC 61834) Video	RFC3189
RTP Payload Format for MPEG1/MPEG2 Video	RFC2250
RTP Payload Format for MPEG-4 Audio/Visual Streams	RFC3016
RTP Payload Format for BT.656 Video Encoding	RFC2431
RTP Payload Format for Uncompressed Video (BT.601, SMPTE 274M, SMPTE 296M)	RFC4175
RTP Payload Format for AC-3 Audio	RFC4184
RTP Payload Format for MP3 Audio	RFC3119, RFC2250

Session Description Protocol

- Discovering the "virtual sockets"
- SDP, RFC2327
 - Describes RTP session characteristics
 - Gets embedded into other protocols
 - Straight-forward to map into service discovery
 - Advertise "virtual sockets"?
 - Easy to use for multicast that is always transmitting
 - Receiver just joins the correct addresses
 - Unicast needs signaling to get a flow started

SDP Example

- Multicast audio+video session
 - 2 separate RTP/UDP streams
 - Dynamic RTP protocol type (98) for video/H263-1998

```
v=0
o=bloggs 2890844526 2890842807 IN IP4 10.45.1.82
s=-
e=j.bloggs@example.com(Joe Bloggs)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
```

Connection setup

- Connecting the "virtual wires"
 - Session Initiation Protocol (SIP), RFC3261
 - Commonly used for VoIP signalling
 - TCP and UDP variants
 - Text protocol, not friendly for hardware
 - Multi-step session setup
 - Real Time Streaming Protocol (RTSP), RFC2326
 - A control protocol (not a streaming transport protocol!)
 - TCP protocol only
 - Scope to develop a hardware-friendly, simple connection initiation protocol

Discussion

Next steps

- Using AVB sync/timestamps with RTP
 - Volunteer to do a presentation on this for the next call?
- Discuss problem statement and requirements on the reflector
 - I'll summarise the discussion at the next call