P1722 Presentation Time

Craig Gunther
(cgunther@harman.com)
October, 2007
P1722 Presentation Time

Topics
• Recommendations
• Existing PT Definition
• Proposed PT Definition
• 61883-6 Audio Format (example)
• P1722 A/V Network Requirements
• 802.1AS GrandMaster Changes
• 1394/AVB Gateway
• Unanswered Questions
Recommendations

1. Redefine avbtp_timestamp as nanosecond based presentation time (0-4.3 second range)
2. Utilize existing SYT_INTERVAL on -6 audio packets
3. When Listener notices a large Presentation Time mismatch it should free-run for several packets (this is a GrandMaster change)
4. When Presentation Time mismatch is small Listener should adjust frequency
5. Talker’s cannot change the Presentation Time Offset of a running stream
Existing PT Definition
Existing PT Definition
(16883 SYT-based Presentation Time)

- 16-bit SYT on Part 2, 3, 5 & 6
 - 2ms maximum Presentation Time Offset
 - Class B traffic allows 10ms over 7 hops (1.4ms/hop)
 - 2ms only works for 2 hops
- 24.576MHz Cycle Time clock
 - ~40.7ns accuracy
 - Clock conversions imply jitter
- Cycle Master
 - Every node must now be Cycle Master capable
 - Must define negotiation process
 - Another PTP-like problem to solve
 - What if a better one comes along?
 - What if current one disconnects?
- Requires periodic CYCLE_START packet
 - Are there latency issues to address here?
 - Cross timestamp approach still requires some type of Cycle Master
- Only applicable to 16883-based encapsulation
 - Do we really need to develop a new scheme for every encapsulation
Existing PT Definition
(Problems with 16-bit/2ms Presentation Time)

- Assume Class 5 stream - 10ms for 7 hops (1.4ms per hop)
- Assume 16-bit Presentation timestamp is set to 1.5ms
 - 16-bits allows a maximum presentation time of 2ms, then wrapping occurs
 - 1.5ms will wrap and match at 3.5ms, 5.5ms, 7.5ms, etc
- Packet arrival times
 - L₁ arrival time @ 2.8ms, 16-bit timestamp will wrap and match at 3.5ms, then be played
 - L₂ arrival time @ 4.2ms, 16-bit timestamp will wrap twice and match at 5.5ms, then be played
 - L₃ arrival time @ 5.6ms, 16-bit timestamp will wrap three times and match at 7.5ms, then be played
 - L₄ arrival time @ 7.0ms, 16-bit timestamp will wrap three times and match at 7.5ms, then be played
- Since 16-bits of timestamp accuracy does not allow a node to determine if the packet has arrived late, all nodes will play the packet and the audio will sound very strange indeed
Proposed PT Definition
Proposed PT Definition

- P1722 currently defines avbtp_timestamp (32-bit Source Timestamp) and 61883 SYT field (16-bit and 25-bit)
- **Change avbtp_timestamp to be Presentation Time**
 - 32-bit field with nanosecond accuracy
 - 0 to 4.3 second range
 - No clock conversions
- Ignore SYT field
 - Not used by AVB nodes
 - 1394/AVB gateways
 - Leave as-is (handy for 1394-to-AVB-to-1394)
 - Also convert to/from avbtp_timestamp AVB Presentation Time
61883-6 Audio Format
(example)
61883-6 Audio Format
(AM824 Multi-bit linear audio format)

• Based on 61883 Part 6:

 Audio and music data transmission protocol

• AM824 Multi-bit linear audio format (clause 8.2.3)
 – 32-bit data
 • 8-bit Label (value = 0x40)
 – ASI1 = 00 (Raw audio from/to CODEC)
 – ASI2 = 00 (24-bit)
 • 24-bit audio sample

• Presentation time stamp every 8th sample implies SYT_INTERVAL=8 (Table 22)
61883-6 Audio Format
(CIP header details)

- SID = 63 (specifies that originating source is AVB)
- DBS = 1 * (# of channels)
- FN = 00b (no fragments)
- QPC = 000b (no FN, therefore no padding)
- SPH = 1b (using Source Packet Header, i.e. 25-bit SYT field)
- rsv = 00b
- DBC = Zero based, monotonically increasing, block number of first Data Block in the packet (unique per packet)
- FMT = 0x10 (61883-6 Audio & Music)
- FDF = 0x02
 - FDF.EVT = 00b (Basic AM824 encoding)
 - FDF.N = 0 (Use default SFC table)
 - FDF.SFC = 010b (48kHz, SYT_INTERVAL=8)
- SYT = 0x00 (61883 Presentation Time will be ignored by AVB)
61883-6 Audio Format
(48kHz audio sampling rate example)

- A Class A isochronous packet is generated every 8kHz
- CIP Header DBS considerations
 - Number of datablocks, but not the size, can change per packet
 - 44.1kHz stereo audio (DBS=2, L+R)
 - 5-6-5-6-5-6 samples
 - DBS = 10-12-10-12-10-12
 - 48kHz stereo audio (DBS=2, L+R)
 - Some “accordion” action: 6-6-6-5-6-6-7-6-6
 - DBS = 12-12-12-10-12-12-14-12-12
 - Note that DBS is predefined in everything but 61883-6
- Assume 48kHz audio sampling rate
 - 6 samples every 8kHz
 - Single timestamp in each 61883-6 packet
 - Which of the 6 samples does the timestamp relate to?
 - How is the timestamp interpreted?
61883-6 Audio Format
(Timestamp Index)

• The SYT_INTERVAL for 48kHz audio specifies that every 8th sample is timestamped (e.g. sample 1,9,17,etc)
 \[s_1 s_2 s_3 s_4 s_5 s_6 \quad s_7 s_8 s_9 s_{10} s_{11} s_{12} \quad s_{13} s_{14} s_{15} s_{16} s_{17} s_{18} \quad s_{19} s_{20} s_{21} s_{22} s_{23} s_{24} \quad s_{25} s_{26} s_{27} s_{28} s_{29} s_{30} \]
• Therefore the 1st packet timestamp is associated with the 1st sample in that packet
• The 2nd packet timestamp is associated with the 3rd sample in that packet
• The 3rd packet timestamp is associated with the 5th sample in that packet
• The 4th packet timestamp is not associated with any samples in that packet
• The 5th packet timestamp is associated with the 1st sample in that packet
61883-6 Audio Format (Timestamp Index)

- How can a device know which sample is timestamped in the current packet?
 - SYT_INTERVAL is encoded in FDF.SFC bits
 - DBC identifies the Data Block Count of the first Data Block in the packet
 - Calculate the 0-based Sample Index like this:

\[
\text{mod}((\text{SYT_INTERVAL} - \text{mod}(\text{DBC, SYT_INTERVAL})), \text{SYT_INTERVAL})
\]

- SYT_INTERVALs (8,16,32) are designed to make it easy to calculate time for a single sample
The table above shows an example of the Sample Index calculations. Note in packet #4 the Sample Index is 6, but the samples only run from 0 to 5. This means the timestamp in packet #4 does not apply to any of the samples in that packet. In fact, it is the same timestamp that will be reported in packet #5.
P1722 A/V Network Requirements
P1722 A/V Network Requirements

- AVB defines low latency Class A traffic with a maximum latency of 2ms over 7 hops
- AVB defines higher latency Class B traffic with a maximum latency of 10ms over 7 hops
- Network should be capable of synchronized Class A delivery of audio data anywhere from 1 hop to 7 hops away (i.e. nearest node may have to buffer 2ms of audio streaming data)
- By default, Presentation Time Offset will be 2ms from ingress time
- Presentation Time Offset greater than 2ms might be handled by the end-node devices, not the network itself
 - NIC should be able to tell driver about latency greater than it can handle
802.1AS GrandMaster Changes
802.1AS GrandMaster Changes
(Introduction)

• Consider Presentation Time as a “highly preferred” time, but not a “mandatory” time
• 61883 DBC is much more useful than just a monotonically increasing number
• GrandMaster change can affect Talker and Listener in different order:
802.1AS GrandMaster Changes
(Scenario)

- Listener media clock PLL will be locked to current PTP GM via DBC and Presentation Time stamps (PTS) in packet
- Listener could calculate an average sample rate using DBC and PTS
- During GM change Listener will see PTS that don’t match what it computes via DBC and the calculated average sample rate
 - There may also be a notification from PTP layer (will be at least 3 seconds late!)
- Listener should free-run for several packets (length of time relates to AS settling time)
- Eventually GM change will reach both Talker and Listener, and “correctly” time stamped packets will arrive
- When PTS is “close enough” to Listener PTP time the Listener can start fine tuning PLL frequency (Listener should not make any assumptions about frequency until this time)
- The previous statement implies that Talker cannot change Presentation Time Offset of an existing stream
- Missing DBC sequences will signify lost samples and can be handled appropriately without affecting frequency
1394/AVB Gateway
1394/AVB Gateway
(1394-to-AVB)

• Convert SYT field to AVB Presentation Time
• Leave SYT field intact – AVB ignores it
• Exchange cross-timestamp packets with other 1394/AVB Gateways
• Could strip the 32-bit SPH to save a quadlet
 – Would introduce jitter on 1394-to-AVB-to-1394
 – AVB Listener ignores SYT field
1394/AVB Gateway
(AVB-to-1394)

• If SID=63 (AVB Talker)
 – Convert AVB Presentation Time to SYT field
 – Possible problems with 2ms SYT field on Part 2, 3, 5 & 6
• Exchange cross-timestamp packets with other 1394/AVB Gateways
• Possibly recreate SPH
 – If SID <> 63
 – And SPH = 1
• Larger range of AVB Presentation Time Offsets could require buffering in gateway
Unanswereded Questions
Unanswered Questions

1. What about playing samples if presentation time has already passed?
 • What if it only happens once?
 • What if it consistently happens?
 • Consumer only?
 • Visual indication if samples are discarded?

2. What about presentation time that is so far in the future that the node can’t buffer it?
Thank you