Temporally Redundant Audio Format

Ashley Butterworth
Apple Inc

The Problem

- Some network mediums (such as WiFi) don't provide the same level of packet delivery reliability as wired Ethernet does.
- In particular there are times when sequences of packets may be lost due to interference, traffic collisions, or other inaccessibility of the medium
- The streaming model that we use in 1722 doesn't handle this well, and we typically don't want to use the retransmission methods provided by the network medium.

A solution

- One solution to the problem is to send 2 copies of the stream with a time offset between the packets of the streams where the time offset between them is large enough to overcome the largest expected packet dropout period.
-This however requires 2 packetizers and 2 depacketizers and uses extra bandwidth for the extra headers.
-The proposal is to put both sets of samples in the same packet.
-This is not for ultra-low latency applications, the latency has to be at least large enouah to cover the expected dropout period + max transit time

How it works

- Packet will look a lot like AAF with extra redundant audio payload data
- If possible would like to make it "compatible" with a AAF listener by ignoring the extra data
- Frame Conversion Time (see Fig 6 1722-2016) contains the Max Allowed Dropout Time (MADT)
-Redundant audio data will have a "presentation time" that is offset from the stream presentation time by MADT (redundant data presentation time $=$ presentation time + MADT)
- This means that the redundant audio is delivered _before_the primary audio
-MADT is communicated out of band by 1722.1

Why redundant data is in the future

- Max Transit Time is already well defined by 1722-2016, and it's a good definition!
-We can keep the Max Transit Time independent of the Max Allowed Drop Time
- By not changing the primary audio the packet could potentially be delivered to a well constructed AAF receiver and played back aligned with the redundant audio receiver

Packet Format

Example

-48kHz, packet every 125us (6 samples per packet), 10ms MADT

- Samples are numbered $0,1,2,3, \ldots$
-First packet contains samples
- primary_audio_data: $0,1,2,3,4,5$
-redundant_audio_data: 480, 481, 482, 483, 484, 485
-Second packet contains samples
- primary_audio_data: $6,7,8,9,10,11$
- redundant_audio_data: 486, 487, 488, 489, 490, 491

Example

 Continued...-99th packet contains samples

- primary_audio_data: 480, 481, 482, 483, 484, 485
-redundant_audio_data: 960, 961, 962, 963, 964, 965
-100th packet contains samples
- primary_audio_data: 486, 487, 488, 489, 490, 491
- redundant_audio_data: 966, 967, 968, 969, 970, 971

Questions and comments

