1722B — PROPOSAL FOR ENHANCED CONTROL FORMATS - V3
(FOLLOW-ON PRESENTATION FROM “LARGER BUS ID SIZE - V2”)

DON PANNELL
21 APR 2020

FOR A SMARTER WORLD

PUBLIC

‘ SECURE CONNECTIONS ‘

Overview — New Text in Red

- The need for enhancing the control formats in IEEE 1722b was discussed In
IEEE1722b-pannell-larger _bus_id_size-2019-12 with examples for CAN & LIN

- Being part of the approved PAR work, this presentation is an updated proposal for a
solution

- While the primary goal was to extend the bus_id sizes, a secondary goal emerged
to harmonize the various formats since it was clear new formats were needed

- The consistency of the formats allows for more efficient building & decoding of the frames
- The current proposal is thus different from the 2019-12 one & the 2020-03 one

- Updated: Optional ACF Validate message (containing validate data on a preceding
message) is proposed for safety systems that can be added after any ACF message

- ACF Message values for the proposed formats are included

- In working on the details, it also became evident that CAN’s can_identifier bits

appear to be reversed — or at least need clarification \r
1 PUBLIC ‘ k

PROPOSAL FOR
VERSION 2 CONTROL
FORMATS

IEEE 1722b — Larger bus_id size — Proposal for CAN

- Move Dbrs (bit rate switch), fdf (flexible data rate), & esi (error state indicator) bits to

previously reserved bits &remeve-the-brs{bitrate-switeh)-bit-as-shewn

- Extend the can_bus _id to 42 11 bits (the lower 5 bits are in the same location)
- The CAN format requires the most bits, thus limiting the bus_id to 12 11 bits
- rtr (remote transmission request) & eff (extended frame format) are not moved

0 1 2 3
o 1 2 3 45 6 7 8 90 1 2 3 456 7 8 9 01 2 3 45 6 7 8 9 01

‘ T’acf_r‘nsg_rtype‘: ‘ | ‘ a‘cf_rqsg_l‘engt‘h ‘ ‘ p"dd mtv| rtr | eff || can_bus_id[10:0]
I I I I I I I I I I I 1 I I I I I

sage_time —_—]

o |
brs fdf‘W gan identifier

| | | | | | | | | | | | 1 | | | | | | | | | | | | | |

CAN Payload can_msg_payload (0-16 quadlets)

h
P

3 PUBLIC

Larger bus_id size — Proposal for CAN — old vs. new

ACF
AVTDPU
Header
acf_msg_type | acf_msg_length pad |mtv| rtr | eff|brs| fdf| esi rsv can_bus_id
CAN — 1+ T+ 1 — —F—+—
1722—2016 Message E— message_timestamp
Info
L L | L L | L L L |
rsv gan identifier
L L | — L L |
can_msg_payload (0-16 quadlets)
0 1 2 3
o 1 2 3 45 6 7 8 9 01 2 3 45 6 7 8 90 1 2 3 45 6 7 8 9 0
ACF
AVTDPU
Header

ﬁcf_r‘nsg_rtype‘ ‘ | a‘cf_rr?sg_l‘engt‘h ‘ pad |mtv] rtr | ef || can_bus_id[10:0]
I

Proposal *

Message
Info . ‘ ‘ | |
brs| fdffesi gan identifier
L L L L | L L L L L L L |
CAN Payload can_msg_payload (0-16 quadlets)

4 PUBLIC

h
P

IEEE 1722b — Larger bus_id size — Proposal for CAN BRIEF

- CAN BRIEF gets the same changes as were done with CAN

- Move Dbrs (bit rate switch), fdf (flexible data rate), & esi (error state indicator) bits to
previously reserved bits &remeve-the-brs{bitrate-switeh)-bitas-shewn
- Extend the can_bus id to 42 11 bits (the lower 5 bits are in the same location)

- rtr (remote transmission request) & eff (extended frame format) are not moved

0 1 2 3
o 1 2 3 45 6 7 8 90 1 2 3 456 7 8 9 01 2 3 45 6 7 8 9 01

acf_msg_type | acf_msg_length | pa ad |mtv| | ffl can_bus_id[10:0]
e L | | | | | | | | |
Info brs | fdf| esi T — _identifie

CAN Payload can_msg_payload (0-16 quadlets)

h
P

5 PUBLIC

Larger bus _id size — Proposal for CAN BRIEF — old vs new

6

0 1 2 3
0o 1 2 3 4 o 12 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
ACF
AVTDPU
Header
1722-2016 CAN Message Info ‘ }acf_msg_‘rtyp? ‘ a}cf_r’rvsg_l}engt}h ‘ ‘ | p?d mtv| rtr | eff | brs| fdf| esi }rsv} }can}_but}s_id}
rsv gan identifier |
L L L L L L L 1 L L
CAN Base Message can_msg_payload (0-16 quadlets)
0 1 2 3
o 1 2 3 4 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
ACF
AVTDPU
Header
Proposal CAN acf_msg_rtypg a‘cf_rqsg_l‘engt‘h | p'?\d |mtv| rtrleffl can_bus_id[10:0]
Message
Info brs | fdf| es an_identifier
CAN Payload can_msg_payload (0-16 quadlets)

PUBLIC

h

P

IEEE 1722b — Larger bus_id size — Proposal for LIN

- LIN was fully packed, so a full quadlet needs to be added (added green guadiet)

- The lin_identifier is moved to the new quadlet in the same area as the
can_identifier (although its not as large as CAN’s)

- The lin_bus_id is shifted right by 8 bits & expanded to 42-11 bits leaving 2 a rsv bits

0 1 2 3
o1 2 3 45 6 7 8 901 2 3 45 6 7 8 9 01 2 3 45 6 7 8 9 01

AVTDPU
Head
acf_msg_type | ‘ a‘cf_n?sg_l‘engt‘h ‘ ‘ p§d mt rsv lin_bus_id[10:0]

LIN ‘ } } _’\- } ‘ | I I I I I I I I I | I I I I
Message — message_timestamp —

Info | |

| , , jfreserve d | lin_identifier
L L L L L L L L L L L L L L L L L L
LIN Payload lin_msg_payload (0-2 quadlets)

h
P

7 PUBLIC

Larger bus_id size — Proposal for LIN — old vs. new

0 1 2 3
o 1 2 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0
ACF
AVTDPU
Header
acf_msg_type acf_msg_length pad |mt lin_bus_id lin_identifier
17“22_2({16 LIN —t—t—F—— I — 1 —F—— —
Message ti ¢
Info BEEEE— message_timestamp —
| L L | L L L
LIN Payload lin_msg_payload (0 - 2 quadlets)
0 1 2 3
0 12 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
ACF
AVTDPU
Header
P I acf_msg_type | acf_msg_length pad |mt rsv lin_bus_id[10:0]
roposa N ———————————— ‘ —
Message BEE— message_timestamp
Info | | | | | | | | | | | | | | |
| ‘ ‘rese‘rved‘ | ‘ ‘ Iir‘l_ide‘ntifi‘er ‘
LIN Payload lin_msg_payload (0-2 quadlets)

8 PUBLIC

h
P

IEEE 1722b — Larger bus_id size — Proposal for FlexRay

- Move the chan (source channel), str (startup), syn (sync), pre (payload preamble),
& nfi (null frame indicator) bits to previously reserved bits as shown to free up room

for the expanded fr_bus id
- The fr_bus_id is shifted right by 8 bits & expanded to 12-11 bits leaving 2 a rsv bits

0 1 2 3
o 1 2 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
ACF
AVTDPU
Head
gcf_msg_rtypq ‘ | a‘cf_rqsg_l‘engt‘h ‘ ‘ p?d mt rsv fr_bus _ﬂlO:O]
Fl XRay I I I I | I I I I I I I I I | 1
Message — message_timestamp —
Info | | —
| re| nfi rsv cycle

L
‘ fr_ﬁra mg_id ‘

FlexRay Payload flexray_msg_payload (0-64 quadlets)

h
P

9 PUBLIC

Larger bus_id size — Proposal for FlexRay — old vs. new

0 1 2 3
0o 1.2 3 4 5 6 7 8 90 1 2 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 1 1 1 1 1 1 ‘ 1 1 1 1 1 1 1 ‘ 1 1 1 1 1 1 1 ‘ 1 1 1 1 1 1 1
AVATTDFPU ACF AVTPDU Header
(Either NTSCF or TSCF header)
Header

L L L L L L L
gcf msg_rtypg ‘ | a‘cf_rqsg_l‘engt‘h pad |mt fr_rbus_rid ‘ rsv ch‘an str | syn| pre| nfi
I I I I I I I I

1722-2016 v

message_timestamp

InfO L L L L | L L | L L L L | L L L
‘fr_f‘rame‘z_id‘ | | ‘ re‘serv‘ed ‘ | ‘ cyFIe ‘
flexray_msg_payload (0-64 quadlets)
0 1 2 3
0o 1 2 3 45 6 7 8 90 1 2 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
ACF
AVTDPU
Header

}acf_msg_rtype | a}cf_n?sg_l‘engt‘h ‘ ‘ pad |mtv] rsv fr_:)us_ﬂlO:O]

Proposal FlexRay |

10 PUBLIC

Message
Info

message_timestamp

1

=

‘ fr_f‘ram‘e_id ‘

rsv |
| |

r g
chan

str syn' pre

£

nfi

F‘SV

cyFIe ‘

FlexRay Payload

flexray_msg_payload (0-64 quadlets)

h
P

IEEE 1722b — Larger bus_id size — Proposal for MOST

- The most_net_id is shifted right by 8 bits & expanded to 12-11 bits leaving 2 a rsv
bits
- The lower 8-bits of the new most_net_id previously was reserved bits

0 1 2 3
o 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
ACF
AVTDPU
Header
gcf_msg_rtypg | ‘ a‘cf_m‘sg_l‘engt‘h ‘ ‘ p:‘:\d mt rsv most_net_id[10:0]
I I I | I I I I I I I I | I I I I
MOST message_timestamp —]
Messag |
|nf0 L
deviTe_id fblock_id inst_id
L L L L L | | | | | L L L | | | | | L | | |
f F_Id L | \Op_\type\ L L L L L L \reselrved\ L L L L L L
Most Payload most_msg_payload

h
P

11 PUBLIC

Larger bus_id size — Proposal for MOST-old vs. new

0 1 2 3
o 1 2 3 4 5 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0
ACF
AVTDPU
Header
‘ gcf_r‘nsg_rtypg ‘ | a‘cf_n‘msg_l‘engt‘h ‘ ‘ p?d mt ‘ mos‘t_ne‘t_id‘ ‘ ‘ ‘rese‘rved‘
I I I I I I | I I I I I I I I I I I I I I I I I I
1 7 2 2 2 O 1 6 MOST — message_timestamp
Message L L R R L
Info | | \dev“fe—iq | | | \fbloc\k—id\ | | | insF—id |
‘ funF_id ‘ | op_type ‘reselrved‘
MOST most_msg_payload
Message _Mmsg_pay
0 1 2 3
0o 12 3 4 5 6 7 8 90 1 2 3 45 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
ACF
AVTDPU
Header
.‘acf_msg_rtype‘ ‘ | a‘cf_m‘sg_l‘engt‘h ‘ ‘ p:‘;\d mt rsv most_net_id[10:0]
I I I I I I | I I I I I I I I I | I I I I I
P ro p Osal MOST —— message_timestamp
Mels:age L | L L L L L L L L L L L
nto | devige_id L fblock_id | | inst_id
‘ fu nF_id ‘ | ‘op_‘type‘ ‘ ‘reselrved‘
Most Payload most_msg_payload
12 PUBLIC

h
P

PROPOSED NEW ACF
MESSAGE TYPES
FOR NEW VERSION 2
CONTROL FORMATS

Proposed New Table 22 — ACF Message Types (9.4.1.2)

1F4;

2046

224

2345

2446
2555

ACF_FLEXRAY
ACF_CAN

ACF _CAN_BRIEF
ACF LIN
ACF_MOST

ACF _GPC
ACF_SERIAL
ACF_PARALLEL
ACF_SENSOR
ACF_SENSOR_BRIEF
ACF_AECP
ACF_ANCILLARY
Reserved
ACF_FLEXRAY V2
ACF_CAN V2

ACF_CAN_BRIEF_V2
ACF_LIN_V2
ACF_MOST V2
Reserved

ACF_USER

FlexRay™ message
Controller Area Network (CAN)/CAN with Flexible Data-Rate
(CAN FD) message

Abbreviated CAN/CAN FD message
LIN® message

MOST® message

General purpose control message
Serial port message

Parallel port message

Analog sensor message

Abbreviated sensor message

IEEE Std 1722.1 AECP message
Video ancillary data message
Reserved

FlexRay™ message v2

Controller Area Network (CAN)/CAN with Flexible Data-Rate
(CAN FD) message v2

Abbreviated CAN/CAN FD message v2
LIN® message v2

MOST® message v2

Reserved

User-defined ACF message

9.4.2
9.4.3

9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13

9.4.2
9.4.3

9.4.4
9.4.5
9.4.6

Since the V2 formats are very similar to the originals, the proposal

IS to document them in the same Subclause as the originals

14 PUBLIC

h
P

PROPOSED NEW ACF
MESSAGE TYPES
FOR NEW VERSION 2
CONTROL FORMATS

IEEE 1722b — Proposal for New CSheeksum Validate Message

16

- Some safety systems want to verify that a message has not been corrupted end-to-

end & this needs to be done after the Ethernet CRC has been removed

- This proposal is to support a new single-guadiet Checksum-Validate ACF Message

type that when used, carries the-checksum-validation data for the immediately
previous acf _msg in this same frame, for the previous message’s acf_msg_length

- This is mainly needed as an enhancement for CAN & LIN, but when done this way

It works for all acf_msg_types

- Rule of use: Before acting on a current message, a check needs to be made to

see If there is a subsequent Checksum Message or not — this is not hard to do

h
P

PUBLIC

IEEE 1722b — Proposal for New Validate Message

- Some safety systems applications only need a 8-bit Checksum while others need a
32-bit CRC, etc.
- This proposal defines the octet following the message’s acf_msg_length as a
validate type
- This allows 256 different types where 0x00 is proposed to be an 8-bit Checksum and 0x80
IS a 32-bit CRC (using the upper bits to define types and the lower bits as a size indicator)
- If only 8-bits of validate data are needed this is a single quadlet message

- If the 32-bit validate data is used, the 8-bit validate data is 0x00 & ignored on read

0 1 2 3
o 1 2 3 4 5 6 7 8 9 0 1 2 3 45 6 7 8 9 01 2 3 45 6 7 8 9 0 1

ACF
AVTDPU
Header

‘ ‘acf_r‘nsg_rtype‘ ‘ ‘ a‘cf_rr?sg_l‘engt‘h ‘ ‘ | ‘ ‘ va‘lidat‘e_ty‘pe ‘ ‘ thiqnal‘8-bit‘vali(‘jate_rdatz‘a

Validate Message
‘ o‘ptior‘lal 3?-biti valigater dat‘a ‘ ‘ ‘ ‘

h
P

17 PUBLIC

PROPOSED NEW ACF
MESSAGE TYPE FOR
NEW VALIDATE
CONTROL FORMATS

Proposed New Table 22 — ACF Validate Message Type (9.4.1.2)

U0 ACF_FLEXRAY

ACF_CAN_BRIEF
ACF_LIN
... ACF_MOST
ACF_GPC
... ACF_SERIAL
ACF_PARALLEL
. ACF_SENSOR
. ACF_SENSOR_BRIEF
. .. ACF_AECP
m_ ACF_ANCILLARY
Reserved
_ ACF_FLEXRAY_ V2

I ACF_CAN_BRIEF_V2
ISR ACF_LIN_V2
_ ACF_MOST_V2

19

PUBLIC

FlexRay™ message
Controller Area Network (CAN)/CAN with Flexible Data-Rate
(CAN FD) message

Abbreviated CAN/CAN FD message
LIN® message

MOST® message

General purpose control message
Serial port message

Parallel port message

Analog sensor message

Abbreviated sensor message

IEEE Std 1722.1 AECP message
Video ancillary data message
Reserved

FlexRay™ message v2

Controller Area Network (CAN)/CAN with Flexible Data-Rate
(CAN FD) message v2

Abbreviated CAN/CAN FD message v2
LIN® message v2

MOST® message v2

9.4.2
9.4.3

944
9.4.5
9.4.6
9.4.7
9.4.8
949
9.4.10
9.4.11
9.4.12
9.4.13
9.4.2
9.4.3

9.4.4
9.4.5
9.4.6

Reserved
Optional validation data for the immediately preceding ACF
message in the same frame

?7?7?

I

ACF_USER

User-defmedACFTTesSage

ACF _VALIDATE is placed at the end of the table as it can work
for all ACF_Message types & added at the end of the Subclause m

CAN_IDENTIFIER
PROPOSED DOC
CLARIFICATIONS

Clarification of the can_identifier bits in CAN Messages

- IEEE 1722-2016 makes it clear the most significant bits are on the left as seen:

0 1 2 3 4 5 6 7
0O 0 O O o o0 o 1

]]]]] I]
msb Isb

Figure 1—Bit ordering within an octet

Represented as 0x01

0
0
0

1
4 7 8 0
0 110 0

2
0

4
1

2
0 2 3
0 1 1

4 5 6 7 9
0O 0 0 O 1

1 2
0 0
! ! I

3
0
I

5 6 9 1
0 0 0 0
! ! I ! ! ! I

3
0
! !

5
0
!

6 7 8 89
0 0 0 0O
! ! ! I

1
0
! !

1
0

olo w

8
0
I I

msh

Ish msb

Isb msh

| Il | |
Isb msh Isb

Figure 2—Octet ordering within a quadlet

Represented as 0x0102 0304

- Bit03 ina 1722 CAN frame is the msb of the can_identifier, correct? It should be!

ACF
AVTDPU
Header

0

1
0 1.2 3 4 5 6 7 8 9 0

2 3
2 3 4 5 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1

CAN
Message
Info

__ad mse type

‘ a‘cf_n?sg_l‘engt‘h L
I

p:ﬁd mtv] rtr
I

eff

brs

fdf

esi

‘FSV‘

 ca q_bu§_id ‘

message_timestamp

gan identifier
— L L L

21 PUBLIC

can_msg_payload (0-16 quadlets)

h
P

can_identifier’s usage from a CAN community point of view

- CAN & CAN-FD both support two can_identifier sizes:
- An 11-bit base ID identified as bits 28 to 18 of the ID where bits 17 to O do not exist
-29-bit extended ID identified as bits 28 to 0 of the ID
= Bit 28 is the most significant bit in both sizes & it's the 15t bit transmitted down the wire

- The ID Is used for bus arbitration using a bit-by-bit comparison of what | transmitted
vs. what | see on the wire where a 0 is dominate (wins)

-Whenever | see a 0 when | transmitted a 1 during the ID phase, | have to stop
transmitting until the next transmit opportunity

-An 11-bit ID, written as: 0b000 0000 1111 or (by industry convention) O0xO00F
-Wins over an ID of: Ob111 0000 0000 or (by industry convention) 0x700
= As the 15t 0bO bit is the msb & 15t bit transmitted down the wire (& identified as bit 28 of the ID)
= |In other words, the lowest ID number always wins the bus
A 4
4\

22 PUBLIC

can_identifier’s problem

- IEEE 1722-2016 supports a 29-bit field for the can_identifier & the eff bit (extended

frame format) to indicate its size (O = 11-bit, 1 = 29 bit)

- The standards states which of the 29-bits should be used for an 11-bit ID as:

9.4.3.11 can_identifier field

The 29-bit can_identifier field contains the CAN message identifier. CAN message identifiers are either
11 or 29 bits in length. The length of the can_identifier field is communicated by the value of the eff bit
(see 9.4.3.5). 11-bit CAN message identifiers are stored in bits 21 through 31 of the quadlet holding the
can_identifier field and the remaining bits of the field are set to zero (0). 29-bit CAN message identifiers
occupy the entire 29-bit field. Storage of the 11-bit CAN identifier is shown in Figure 55. The letter v
indicates a valid identifier bit.

Figure 55 —Storage of an 11-bit CAN identifier

- Which is backwards as bit 3 is the msb!

- Oris bit 31 is the msb and all 29 bits are swizzled compared to convention,
- Oris bit 11 the msb for 11-bit IDs & bit 3 is the msb for 29-bit IDs

23 PUBLIC

h
P

can_identifier’s solution defining bit 3 as msb for both sizes

- This at least needs to be clarified in IEEE 1722b

- The correct solution to me is define bit 3 in Fig 55 as the msb for both ID sizes, move the

v’'s to bits 3:13 and update the text and figures accordingly:
9.4.3.11 can_identifier field

The 29-bit can_identifier ficld contains the CAN message identifier. CAN message identifiers are either
11 or 29 bits in length. The length of the can_identifier ficld is communicated by the value of the eff bit
(see 9.4.3.5). 11-bit CAN message identifiers are stored mn bits 21-3 through 21-13 of the quadlet holding
the can identifier ficld and the remaining bits of the field are set to zero (0). 29-bit CAN message
identifiers occupy the entire 29-bit field. Storage of the 11-bit CAN identifier 1s shown in Figure 55. The
letter v indicates a valid identifier bit.

0 1 2 3
o 1 2 3 4 5 & 7 8 5 0 1 2 3 4 5 6 7 8 % 0 1 2 3 4 5 6 7 B 9% 0 1

Ir_wIvvv1.r1.r1.r!.lVUUUUU|UUUUUDDDIDDDDDDDD
| | I (I I I S [[S I — A A S— N I — S — R —— I E— — ——

msb

0 1
01 2 3 4 5 & 7 B 9 0

=

2 3 4 5 & 7 B 9% 0 1 2 3 4 5 & 7 B % 0 1

|r51.rIEIEIDEIDEIEI
| II|I||I

=
=

DDDDDDDDDUUUUUUUUUUU|
IIII|IIIII I|IIIIIII

Figure 55—Storage of an 11-bit CAN identifier

- This could be done for all CAN formats on just the Proposed V2 Formats (above)
A 4

24 PUBLIC ‘ k

can_identifier’s solution defining bit 31 as msb for both sizes

- Alternatively, define bit 31 in Fig 55 as the msb for both ID sizes:

9.4.3.11 can_identifier field

The 29-bit can_identifier field contains the CAN message identifier. CAN message identifiers are either
11 or 29 bits in length. The length of the can_identifier field is communicated by the value of the eff bit
(see 9.4.3.5). 11-bit CAN message identifiers are stored in bits 21 through 31 of the quadlet holding the
can_identifier field and the remaining bits of the field are set to zero (0). 29-bit CAN message identifiers
occupy the entire 29-bit field. Storage of the 11-bit CAN identifier is shown in Figure 55. The letter v
indicates a valid identifier bit.

Figure 55—Storage of an 11-bit CAN identifier

- If the previous solution is not chosen for the existing CAN formats (assuming
people implemented it as shown in Fig 55) the msb must at least be labeled!

- But if the msb is bit 31 this goes against IEEE 1722's convention & there is no

guarantee that implementers assumed this!
\

25 PUBLIC ‘

can_identifier’s solution defining bit 31 as msb for both sizes

- Alternatively, define bit 21 in Fig 55 as the msb for 11-bit ID sizes & bit 3 as the msb for
29_b|t ID Sizes: 9.4.3.11 can_identifier field

The 29-bit can_identifier field contains the CAN message identifier. CAN message identifiers are either
11 or 29 bits in length. The length of the can_identifier field is communicated by the value of the eff bit
(see 9.4.3.5). 11-bit CAN message identifiers are stored in bits 21 through 31 of the quadlet holding the
can_identifier field and the remaining bits of the field are set to zero (0). 29-bit CAN message identifiers
occupy the entire 29-bit field. Storage of the 11-bit CAN identifier is shown in Figure 55. The letter v
indicates a valid identifier bit.

g123455?BQé123456?895123456?8931
rsv 0|0|0|0 ClllOIOIOIGIUIOIO|0|0|0|0IOIOIVIvlvlvlvlvlv\.rvvv
msb msb
29-bit 11-bit

Figure 55—Storage of an 11-bit CAN identifier

- This keeps the msb to the left, but is weird to anyone used to CAN & how it is specified &
operates (i.e., the msb of the ID never moves & is always the 29% bit)

- An 11-bit ID of Ox3FF, seen as 0x0000 03FF, is higher priority than a 29-bit ID of OXOFFF FFFF!
- The ID are priority bits and it is hard to tell the size without looking at the message’s eff bit.
- Because of these problems, some clarification is needed in 1722b!

- But which one for the current formats & should be different for the V2 formats?
26 PUBLIC

h
P

SECURE CONNECTIONS
FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

