
IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

============

Add the following entries to Table 22 – ACF message types. Other entries not shown.

Value Name Description Subclause

0E16 ACF_I2C Inter-IC (I2C) bus message 9.4.16

0F16 ACF_I2C_BRIEF Abbreviated I2C bus message 9.4.17

1016 ACF_SPI_SAFE Serial Peripheral Interface (SPI)

message specified by SAFESPI

[https://safespi.org/]

9.4.18

=========== contribution below recreated from posted PDF ==========

[EDITOR’s NOTE from 1772b-I2C-contrib-bwy-v9-FINAL to this document v10. – DELETE after

presentation to IEEE 1722.

1. Bits in header that lacked explicit and verbose polarity value definition now have such statements.

Cause: similar bus signals in active low may confuse the reader, e.g. RD on bus vs rd in header. Avoid

potential confusion.

2. Two types of read – read with early (ack) response and read with ack and data response are the

controller’s choice with no clear benefits for having the two variations. Remove read with early (ack)

response to simplify operation.

Consequence: In Table in 9.4.16.19, the variable “RR” is replaced with “1”, and references to “early

response” operation in text is deleted. And Diagram in the same sub-clause revised.]

[BEGIN, not a part of the contribution to this draft]

9. Level 1

9.4. Level 2

[END, not a part of the contribution to this draft]

9.4.16. I2C message

9.4.16.1. Overview

The Inter-Integrated Circuit (I2C) ACF message provides the capability to transport I2C transaction

events over a TSN network. An I2C device may be a Controller or a Target. For a given I2C bus cycle,

there is only one Controller and typically there is only one target that responds. The bus cycle signals are

transported as messages encoded in ACF over a TSN network.

This I2C ACF request message transparently conveys the I2C transaction bus state of the Controller over

a network onto the Target’s I2C bus, and any responses from the Target’s bus onto the Controller’s bus,

each with up to one byte of data per message.

I2C protocol allows a Target device to slow the transfer rate of a transaction using a mechanism often

referred to as "clock stretching" so that a slow Target device may acquire or retrieve the data and then

respond with the data. This mechanism allows the Controller's bus to be stalled while waiting for a

response message from the Target's bus.

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

The I2C ACF message protocol is designed to maximize compatibility to legacy I2C bus operation

between I2C devices over a network at the cost of bandwidth and payload efficiency. See 9.4.16.19 for an

illustration of this transparent mode of operation, and see Figure 78 illustration of Controller, Controller

Agent, Target, and Target Agent.

For a more modern system implementation of I2C transport where the legacy I2C bus cycle compatibility

is not required, the Generic Byte Bus (GBB) ACF message (9.4.14) may be used to transfer one or more

bytes in a single ACF message. The use of GBB would also provide better network bandwidth

utilization and minimize processing overhead.

[Editor’s note –insert a reference to I2C spec, if one is available. If not, be silent.]

The I2C message inherits the following fields from the Common ACF message described in 9.4.1:

̶ acf_msg_type: 7 bits

̶ acf_msg_length: 9 bits

The I2C message has an acf_msg_type field of ACF_I2C (see Table 22).

The I2C message defines the following message-specific fields:

̶ pad (padding length): 2 bits

̶ mtv (message_timestamp valid): 1 bit

̶ str (start): 1 bit

̶ stp (stop): 1 bit

̶ i2c_bus_id: 11 bits

̶ message_timestamp: 8 octets

̶ wr (write): 1 bit

̶ akv (ack valid): 1 bit

̶ ack (acknowledge): 1 bit

̶ rdv (read data valid): 1 bit

̶ c2t (Controller to Target): 1 bit

̶ rd (read): 1 bit

̶ trr (target response 5 request): 1 bit

̶ rsv (reserved): 1 bit

̶ transaction_num: 8 bits

̶ evt: 4 bits

̶ exception_codes: 4 bits

̶ reserved: 8 bits

̶ i2c_msg_payload: 0 to 1 quadlets

These fields are shown in Figure 77.

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

Figure 77 -- I2C ACF message

9.4.16.2. pad (padding length) field

The pad field indicates the length of padding at the end of the message payload in octets. The Talker adds padding to

the original data so that this message ends on a quadlet boundary. The Listener removes the padding when it parses

the ACF message to obtain the original base message. A value of zero (0) in the pad field indicates that there is no

padding in the ACF message payload. For the I2C ACF message, the i2c_msg_payload may be null or one byte;

therefore, the only valid pad values are 0 or 3. See 9.4.1.6 for examples showing the proper placement of a single byte

in the i2c_msg_payload quadlet.

9.4.16.3. mtv (message_timestamp valid) field

The mtv (message timestamp valid) field contains a bit indicating whether the 8-octet message_timestamp field

contains valid data.

The bit is set to one (1) if the message_timestamp field contains a valid timestamp.

The bit is set to zero (0) if the message_timestamp field is not valid. An AVTP Listener ignores the

message_timestamp in any message where mtv is set to zero (0) as its contents are undefined (see 9.4.1.5).

9.4.16.4. str (start) field

The str (start) field contains a bit that indicates the I2C bus START or RE-START signal, when c2t field is one (1).

The str field is ignored when the c2t field value is a zero (0).

9.4.16.5. stp (stop) field

The stp (stop) field contains a bit that indicates I2C bus STOP signal.

This bit is set to one (1) if the I2C bus STOP signal is asserted.

This bit is set to zero (0) if the I2C bus STOP signal is deasserted.

9.4.16.6. i2c_bus_id field

 word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ACF

AVTP

DU

HDR

W0 AVTPDU Header

(Ether NTSCF or TSCF header) W1

…

I2C

ACF
HDR

A0 acf_msg_type acf_msg_length pad mtv str stp i2c_bus_id

A1 message_timestamp

 A2

A3 wr akv ack rdv c2t rd trr rsv transaction_num evt exception_codes reserved

Value V1 i2c_msg_payload (0~1 quadlet)

Additional

Messages
(Optional)

acf_msg_type acf_msg_length

acf_msg_payload

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

The 11-bit i2c_bus_id field provides an identifier for the byte bus on which this message originated or is targeted.

The value of i2c_bus_id is application specific. It has several potential uses, including the identification of the

originating and terminating I2C bus transport when using Ethernet as backbone to carry messages from a multiplicity

of I2C buses.

If not specified for a particular application, the value of i2c_bus_id shall be set to zero (0) by the Talker.

9.4.16.7. message_timestamp field

See 9.4.1.5.

9.4.16.8. wr (write) field

The wr (write) field contains a bit indicating a write operation and that i2c_msg_payload contains valid write data.

Note: wr field does not reflect I2C bus transaction direction bit (R/W).

This bit is set to one (1) if the wr is asserted.

This bit is set to zero (0) if the wr deasserted.

9.4.16.9. akv (ack valid) field

The akv (ack valid) field contains a bit indicating the ack field (9.4.16.10) is valid.

This bit is set to one (1) if the akv is asserted.

This bit is set to zero (0) if the akv is deasserted.

9.4.16.10. ack (acknowledge) field

The ack (acknowledge) field contains a bit indicating the bus acknowledge bit from the I2C bus transaction.

This bit is set to one (1) if the ack is asserted.

This bit is set to zero (0) if the ack is deasserted.

9.4.16.11. rdv (read data valid) field

The rdv (read data valid) field contains a bit indicating the rd bit (9.4.16.13) is valid as well as the contents of

i2c_msg_payload.

This bit is set to one (1) if the rdv is asserted.

This bit is set to zero (0) if the rdv is deasserted.

9.4.16.12. c2t (Controller to Target) field

The c2t (Controller to Target) field contains a bit indicating the direction of this I2C message.

This bit is set to one (1) if the I2C message is from Controller to Target.

This bit is set to zero (0) if the I2C message is from Target to Controller.

9.4.16.13. rd (read) field

The rd (read) field contains a bit indicating a read operation on the I2C bus. See rdv (9.4.16.11) whether

i2c_msg_payload contains valid read data. Note: rd field does not reflect I2C bus transaction direction bit (R/W).

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

This bit is set to one (1) if the rd is asserted.

This bit is set to zero (0) if the rd is deasserted.

9.4.16.14. trr (target response request) field

The trr (target response request) field contains a bit indicating Controller Agent requests the Target Agent to send a

response when the Target’s I2C bus cycle ended. See 9.4.16.19 for the Request and Response message types.

This bit is set to one (1) if the Controller Agent requests the Target Agent to send a message in response to a request

with the stp bit set (CR4-WE or CR7-RE). Upon receipt, Target Agent shall respond with the message TR5-End

when bus cycle terminates with a STOP.

This bit is set to zero (0) if the Controller Agent does not request Target Agent to send any response to a request with

the stp bit (CR4-WE or CR7-RE) set unless an error occurs. Upon receipt, Target Agent shall not send any response.

This bit set to one (1) if the Controller requests the Target Agent to send a message in responds to a request with the

<bold>stp</bold> bit set. Upon receipt, Target shall generate a response message when bus cycle terminates with a

STOP.

This bit is set to zero (0) if the Controller does not request the Target to send any response to a request with the

<bold>stp</bold> bit set unless an error occurs.

9.4.16.15. transaction_num field

The transaction_num field contains 8 bits indicating the sequence of I2C messages in a stream. It is used to associate

Target Agent’s response messages to request messages generated by Controller Agent. This field may start at any

value for the first I2C transaction message. The transaction_num field value shall be maintained for each i2c_bus_id

field value. The Target Agent’s response messages shall use the received transaction_ num value in the

corresponding Controller's request message associated with the given i2c_bus_id for all responses. The transaction_

num field shall be incremented by one (1), with wrapping, on the start of each new I2C request message. This field is

to wrap from 111111112 to 000000002 (FF16 to 0016).

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

The value of this field is determined by the Controller Agent. Target can use the transaction_ num to detect I2C

messages lost in transit. This field is also used to associate an operation request with the correct operation response(s)

that are returned to the Controller Agent’s message(s) (See 9.4.16.19).

A Target Agent shall be able to tolerate a starting transaction_ num of any value.

The transaction_num field may be used to support optional message retransmission upon loss of message detection

described in 9.4.16.20.

9.4.16.16. evt (event) field

The evt (event) field contains 4 bits that are reserved for upper-level protocols to indicate events in the messages. The

specific use of these bits is outside the scope of this standard.

NOTE— One example usage of the evt field is the ability to change a message’s bit rate speed for applications where fast and slow

devices coexist on the same target I2C bus. This is needed when a slower device can only accept its data if the bus’s bit rate speed

is one that it supports and faster devices on the same bus need to get their data faster.

9.4.16.17. exception codes field

The exception codes field contains 4 bits that encodes an I2C bus transaction exceptions that may have occurred

during the bus transaction. The Target Agent uses the exception code to indicate conditions that caused abnormal

I2C bus cycle termination, or error conditions that should cause termination of bus cycle, or reporting exception

condition while performing proper operations such as duplicate request handing, or others.

It may be possible, though unlikely, to experience multiple exceptions in the same response function. When

multiple exceptions are detected, it is recommended that the lowest binary value encoding to be selected; however,

the Target agent should select the most relevant exception code in a given bus cycle.

exception codes
<bit 0, 1, 2, 3>

meaning

0000 No exceptions detected

0001 - 0011 Reserved for future use

0100 - 0111 User defined exceptions or errors.

1000 Bus timeout – transaction did not complete due to timeout waiting for an ack or data.

1001 Bus busy – transaction could not start due to excessive time waiting for bus idle.

1010 Controller conflict – i2c_bus_id does not match initial request. The behavior of a Target

Agent that is capable of queuing requests from multiple Controller Agents is beyond the

scope of this standard

1011 transaction num sequence error –sequence does not match expected value from the

previous message.

1100 Start error – str (START) field is not set in a I2C Controller message or str (START)

field is set when not expected and corresponding bus transaction terminated.

1101 - 1111 Reserved for future use

Table xx – I2C ACF exception codes field values

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

9.4.16.18. i2c_msg_payload field

The i2c_msg_payload field is a variable-length field that contains from 0 to 1 quadlet of message data and if 1 quadlet

in size, it shall contain exactly one byte of valid data. It is permissible for acf_msg_length field to indicate 5 quadlets

of message when no valid data is expected. In such case, the receiver shall deem the payload quadlet as null data.

The overall size of the i2c_msg_payload field shall always be an integer multiple of quadlets. See 9.4.1.6 for examples

of various and different messages lengths, their pad values and quadlet sizes, and the data placement in the payload

field.

9.4.16.19. Transparent I2C ACF Application

In figure 78, the device A, may initiate a read or write to the device D over the I2C Bus. The Controller A sends a

request (read or write); the request is received and encoded in I2C ACF by the 1722 I2C Controller Agent (“Controller

Agent”) and sent over the network; the request is received by the 1722 I2C Target Agent (“Target Agent”) and

appropriate bus signals are asserted onto the I2C Bus connected to the device D. Devices A and D do not need to be

aware of the presence of the intermediate agents nor the network.

Each I2C bus state and signals from the Controller is encoded in one of the I2C Requests by the Controller Agent, and

each I2C Request is processed by the Target Agent and one of the I2C Response is sent back for each of the I2C

Request made. A Target Agent shall respond to each I2C Request with an I2C Response that reflects the I2C bus

transaction state. For the Requests CR4-WE (Write with End) and CR7-RE (Read with End), a Target Agent respond

with TR5-End to indicate end of I2C bus activity, if the trr field is set to one (1). Unlike other I2C Requests or I2C

Responses, TR5-End does not have corresponding I2C bus state change upon its receipt.

Figure 78 -- Network and 1722 I2C Agent connections to I2C Bus

The 1722 I2C Controller Agent (may issue the following I2C Request types, conveyed via I2C bus states and

signals:

CR1-Start: Bus Transaction Start with a read or write

CR2-AC: Address Continuation (10 bit address access)

CR3-WC: Write Continue

CR4-WE: Write with End (STOP)

CR5-WR: Write with Restart

CR6-RC: Read Continue

CR7-RE: Read with End (STOP)

CR8-RR: Read with Restart

The 1722 I2C Target Agent may issue the following I2C Response types, conveyed via I2C bus states and signals:

TR1-NACK: Bus transaction NACK (not acknowledge)

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

TR2-ACK: Bus transaction ACK (acknowledge)

TR3-RD: Read Data

TR4-RAD: Target ACK and Read Data

TR5-End: Bus transaction End Confirm (CR4 or CR7 End response)

The Table xx shows encodings of various I2C ACF field values associated with I2C Request types or the I2C Response

types. The transaction_num, exception_codes, trr, and evt fields are excluded from the table to remain concise.

Blank space indicate don’t care. The variable RR (Read Request) used on rd field may be set to a one (1) if a read

operation with Target’s early response is indicated, or set to a zero (0) if a read operation with Target’s response to a

read request is indicated. When the Read Request is indicated from the Controller Agent’s request, the Target Agent’s

response will be returned with the first byte of read data. The Figure 79 illustrates representative bus transactions both

an early response and a read request.

Request or

Response

I2C_msg_
payload

wr akv ack rdv c2t rd str stp

Controller

CR1-Start <addr> 1 0 1 1 1RR 1 0

CR2-AC <addr> 1 0 1 1 1RR 0 0

CR3-WC <data> 1 0 0 1 0 0 0

CR4-WE 0 0 0 1 0 0 1

CR5-WR <addr> 1 0 1 1 1RR 1 0

CR6-RC 0 1 1 0 1 1 0 0

CR7-RE 0 1 0 0 1 0 0 1

CR8-RR <addr> 1 1 0 1 1 1RR 1 0

Target

TR1-NACK 1 0 0 0

TR2-ACK 1 1 0 0

TR3-RD <data> 0 1 0 1

TR4-RAD <data> 1 1 1 0 1

TR5-END 0 0 0

Table xx – I2C ACF Controller Request and Target Response field values

Here are example I2C bus tractions to help illustrate the application of I2C Request and Response pairs for

a write operation terminated by the Target,

a write operation terminated by the Controller,

a read operations with Target’s early response,

a read operation with Target’s read request, and

a write operation followed by a re-start into a read operation with Target’s response to a read request.

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

Bus Idle

Bus Idle

S <Target addr> W Clock Stretch

S <Target addr> W

C
R

1

A

T
R

2

A <data>

Wait

C
R

3

<data> N

Clock Stretch

T
R

1

N P

Wait

C
R

4

Bus Idle

P Bus Idle

T
R

5

Controller

Target

I2C Agent Message

Write with Target Termination

Bus Idle

Bus Idle

S <Target addr> W Clock Stretch

S <Target addr> W

C
R

1

A

T
R

2

A <data>

Wait

C
R

3

<data> A

Clock Stretch

T
R

2

A P

Wait

C
R

4

Bus Idle

P Bus Idle

T
R

5

Controller

Target

I2C Agent Message

Write with Controller Termination

A <data>

C
R

3

Clock Stretch

T
R

2

<data> A Wait

Bus Idle

Bus Idle

S <Target addr> R Clock Stretch

S <Target addr> R

C
R

1

A

T
R

4

A <data>

Wait

C
R

6

Clock Stretch

T
R

3

N P

Wait

Bus Idle

P Bus Idle

T
R

5

Controller

Target

I2C Agent Message

Read with Read Request and Data from the Target, TR5 requested

<data>

A

A <data>

C
R

7

trr=
1

N

Target
Read with Read Request and Data from the Target, TR5 not requested

S

P

A

N

R

W

START

STOP

ACK

NACK

READ

WRITE

Bus Idle

Bus Idle

S <Target addr> W Clock Stretch

S <Target addr> W

C
R

1

A

T
R

2

A <data>

Wait

C
R

3

<data> A

Clock Stretch
T
R

2
A S

Wait

C
R

5

S

T
R

4

Controller

Target

I2C Agent Message

Write, Restart, then Read with Read Request and Data from the Target

<Target addr> R

<Target addr> R

Clock Stretch

A <data>

A <data> N P Bus Idle

C
R

7

Wait N P Bus Idle

T
R

5

<data>

Bus Idle

Bus Idle

S <Target addr> R Clock Stretch

S <Target addr> R

C
R

1

A

T
R

4
A <data>

Wait

C
R

6

Clock Stretch

T
R

3

N P

Wait

Bus Idle

P Bus Idle

Controller

I2C Agent Message

<data>

A

A <data>

C
R

7

trr=
1

N

<data>

Figure 79 -- I2C Bus and Agent Request: Response Examples

9.4.16.20. Lost Message Handling

In figure 78 the Controller Agent request message may be lost due to congestion (if bandwidth reservation is not used)

or due to random error (bit-error-rate of given physical layer), or any other reason. The Controller Agent, at its option,

may implement a timer to help detect message loss and then re-transmit the same message to the Target. In this case,

Target sees the request message for the first time, and responds normally. If, instead, the response from the Target

was lost, the Controller Agent still detects message loss. If Controller Agent re-transmits the same message to the

Target when the response message was lost, the Target Agent sees the same message from the Controller twice. The

same message is detected when transaction_num did not increment from the message immediately preceding the

current message and the same i2c_bus_id field value is used.

The Controller’s message loss detection and re-transmission is optional and beyond the scope of this standard. The

appropriate message-loss timer value is often specific to the system and should be set to a lower value than the I2C

bus timeout value in the system.

The Target Agent shall respond to the detected duplicate message from the same Controller with the same response

as the previous message in order to support the Controller’s lost message handling function.

9.4.16.21. Proxy I2C Access Controller

In figure 78, the Controller and I2C Controller Agent function may be entirely embodied in the Ethernet node, as

illustrated as the Proxy I2C Access Controller. In this case, there may not be a physical I2C bus on the Controller,

while the Target may be a legacy I2C bus device. Neither the I2C Target Agent nor the Target can distinguish whether

the Controller has a physical I2C bus. Therefore, it is recommended that the interoperability considerations for I2C

ACF to be performed at the I2C Controller Agent and the I2C Target Agent.

[Editor's note: Check on all the shall statements and PICS pro forma to ensure interoperability test points are all on

the Target and Target Agent side whenever and where ever possible.]

9.4.17. Abbreviated I2C message

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

[Editor’s note: Don to consider this in overall CL9 context: It is perhaps worth indicating that the

Abbreviated I2C ACF message is similar to "I2C ACF message" except that it doesn't have a timestamp.

Clause 9.4.17 describes only the differences between "Abbreviated I2C ACF message" and "I2C ACF

message"]

9.4.17.1. Overview

The Abbreviated Inter-Integrated Circuit (I2C) ACF message provides the capability to transport

messages on I2C over a TSN network. An I2C device may be a Controller or a Target. For a given I2C

bus cycle, there is only one Controller and typically there is only one Target that responds. The bus cycle

signals are transported as messages encoded in ACF over a TSN network.

For a more modern system implementation of I2C transport where the legacy I2C bus cycle compatibility

is not required, the Generic Byte Bus (GBB) ACF message (9.4.14) may be used to transfer one or more

bytes in a single ACF message. The use of GBB would also provide better network bandwidth

utilization and minimize processing overhead.

The I2C message inherits the following fields from the Common ACF message described in 9.4.1:

 acf_msg_type: 7 bits

 acf_msg_length: 9 bits

The I2C message has an acf_msg_type field of ACF_I2C_BRIEF (see Table 22).

The I2C message defines the following message-specific fields:

̶ pad (padding length): 2 bits

̶ mtv (message_timestamp valid): 1 bit

̶ str (start): 1 bit

̶ stp (stop): 1 bit

̶ i2c_bus_id: 11 bits

̶ wr (write): 1 bits

̶ akv (ack valid): 1 bit

̶ ack (acknowledge): 1 bit

̶ rdv (read data valid): 1 bit

̶ c2t (Controller to Target): 1 bit

̶ rd (read): 1 bit

̶ trr (target response 5 request): 1 bit

̶ rsv (reserved): 1 bit

̶ transaction_num: 8 bits

̶ evt: 4 bits

̶ exception_codes: 4 bits

̶ reserved: 8 bits

̶ i2c_msg_payload: 0 to 1 quadlets

IEEE P1722b Draft 1.8 Contribution – I2C
IEEE Standard for a Transport Protocol for Time-Sensitive Applications in Bridged Local Area Networks

These fields are shown in 9.4.16.1.

Figure 80 ̶ Abbreviated I2C ACF message

9.4.17.2. mtv (message_timestamp_valid) field

The mtv field shall set to zero (0) for all transmitted BYTE_BUS_BRIEF messages and ignored on all received

BYTE_BUS_BRIEF messages.

 word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ACF

AVTP

DU

HDR

W0 AVTPDU Header

(Ether NTSCF or TSCF header) W1

…

I2C

ACF
HDR

A0 acf_msg_type acf_msg_length pad mtv str stp i2c_bus_id

A2 wr akv ack rdv c2t rd trr rsv transaction_num evt exception_codes reserved

Value V1 i2c_msg_payload (0~1 quadlet)

Additional
Messages

(Optional)

acf_msg_type acf_msg_length

acf_msg_payload

