RADAR STREAMING FORMAT FOR 1722

May 27, 2025

Abhijit Deb

Automotive Ethernet, NXP Semiconductors, Netherlands

Adriaan Niess

Cross-Domain Computing Solutions, Bosch, Germany

OUTLINE

- Introduction
 - Sensor data organization
 - Chirp Data
 - Sensor Data Segmentation
- GISF ACF Message Format
- Proposed Radar Format
 - Renaming / re-purposing GISF fields
- Conclusion

SENSOR DATA ORGANIZATION

- Current generation radar sensors perform local data processing and transmit an object-based data to an ADAS control unit
- Radar sensors need to support Ethernet → Data Streaming
- Radar data (before/after 1st FFT) interpreted as a cube
 - Number of Chirps
 - Number of samples (per chirp)
 - Number of RX antennas
- Analogy to image frames
 - Radar Cube → Image Frame
 - Radar Chirp → Image Line
- New ACF type proposal for radar encapsulation in 1722c
 - Based on the existing GISF format

CHIRP DATA

- To reuse the existing GISF format, chirps must be encoded as 1D data
- This way chirps can be treated the same way as the lines of an image
- Chirps might (optionally) be transmitted in a compressed form

SENSOR DATA SEGMENTATION

1722 (N)TSCF	1722 ACF Radar	Chirp Segment 1,1	1722 (N)TSCF	1722 ACF Radar	Chirp Segment 1,2	•••	1722 (N)TSCF	1722 ACF Radar	Chirp Segment 1,m
1722 (N)TSCF	1722 ACF Radar	Chirp Segment 2,1	1722 (N)TSCF	1722 ACF Radar	Chirp Segment 2,2	•••	1722 (N)TSCF	1722 ACF Radar	Chirp Segment 2,m
	;		:			٠٠.	:		
1722 (N)TSCF	1722 ACF Radar	Chirp Segment n,1	1722 (N)TSCF	1722 ACF Radar	Chirp Segment n,2	•••	1722 (N)TSCF	1722 ACF Radar	Chirp Segment n,m

- Chirps are expected to be bigger than 1.5KB and need to be split into m segments
- A radar cube consisting of n chirps therefore would be split up into a total of $(n \times m)$ segments
- Counters for n, m will make reuse of GISF's line_number and i_seq_number fields

Figure 112 —GISF ACF message

acf_msg_type

- Type of message contained in the payload
- 7-bit: use one of the reserved value \rightarrow 0x13 to 0x20 or, 0x24 to 0x75

acf_msg_length

 8-bit: number of quadlets of data contained in the message (including the quadlet containing the acf_msg_length field and all subsequent quadlets including the last quadlet of acf_msg_payload)

pad

- 2-bit: number of padding bytes in the last quadlet of payload (to make it an integer multiple of quadlets)
- Shall be 0 except for the last packet of a chirp

Figure 112 —GISF ACF message

mtv

- 1-bit: message_timestamp valid indicates whether the 8-octet message_timestamp field contains valid data
- '1' means that the message contains valid timestamp

rsv

- 2-bit: reserved

radar_sensor_id (image_sensor_id)

- 11-bit: customer defined ID of RADAR sensor (application dependent, not defined by standard)

Figure 112 —GISF ACF message

message_timestamp

- acquisition time of the first sample of either the chirp or the cube → received chirp
- 64-bit: GPTP time in nanoseconds

tc (bf)

- timestamp per chirp or per cube
- '0': timestamp per cube
- '1': timestamp per chirp

Figure 112 —GISF ACF message

- bb (el)
 - 1-bit: begin of cube identifier
 - '1' → indicates the first AVTPDU (first segment) of a radar cube
- ec (tl)
 - 1-bit: end of CHIRP identifier
 - '1' → Last AVTPDU of the CHIRP → last segment, if CHIRP is segmented over several Ethernet frames
- eb (ef)
 - 1-bit: end of cube identifier
 - '1' → indicates the end of the CHIRP sequence → Last AVTPDU of the cube, when segmented over several Ethernet frames

Figure 112 —GISF ACF message

seg_offset (reserved)

- 16-bit: segment offset within the CHIRP in bytes
- Maximum → 64kB-1

evt

- 4-bit: indicates sensor event / CHIRP profile number (pointer in the Table that gives detailed parameter of the CHIRP)
- Events → reconfiguration, restart, failure since previous packet sent, etc.

Figure 112 —GISF ACF message

- data_type_id_1 (line_type_id)
 - 5-bit: describes the chirp profile ID of the configuration table
 - The same configuration table is created in both the sensor node and in the ECU during the initial configuration phase

Figure 112 —GISF ACF message

data_type_id_2 (evt2)

- 8-bit: defines the payload data type using enumeration
 - ADC data → 12 values (8/10/12/14/16/32-bit; real + complex)
 - FFT data → 6 values (8/10/12/14/16/32-bit; complex)
 - FFT compressed → 8 values (vendor dependent)
 - Interleaved/non-interleaved → 2
 - Total nr of channels →
 - Reserved
- Enumeration table tbd

Figure 112 —GISF ACF message

- r_seq_num (i_seq_num)
 - 8-bit: sequence number for segmented packets within a CHIRP
 - Starts with 0 for the first segment of each CHIRP and increments with every additional segment within the CHIRP
- chirp_num (line_number)
 - 16-bit: CHIRP number → more than enough (more than 4k CHIRPS are not foreseen → 12bits are ok)

CONCLUSION AND NEXT STEPS

- Radar format proposed
 - Based on GISF ACF format
 - Encapsulate the necessary radar information
- Review and feedback welcome
- Next steps
 - Feedback from working group participants
 - Alignment and consolidation

SECURE CONNECTIONS FOR A SMARTER WORLD