
Hardware Accelerator for Exact Dot Product

David Biancolin and Jack Koenig
ASPIRE Laboratory

University of California, Berkeley

In this paper we present a coprocessor capable of
computing a dot product exactly by use of a “complete
register” (CR) that encodes a fixed point representation
of the complete IEEE754 double precision space. We
explore the design space of the coprocessor by running
simulations on large numbers of distinct configurations.
Since only the accumulation register is represented
exactly, we demonstrate that EDP is realizable in silicon
, requiring additional 11% over Rocket’s area. In
addition, the accelerator showed speedups of 3-6x over
a conventional dot product and matrix multiplication
while providing both exactness and reproducibility.

1 INTRODUCTION
Floating point computation is essential to the fields

of scientific computing and engineering. Despite near
universal use, most people are unaware that floating
point is imprecise by its very nature. Where arithmetic
operations like addition and multiplication exhibit the
communicative and associative properties, intermediate
rounding means the corresponding floating point
operations do not. This poses a significant problem in
safety critical areas like civil and nuclear engineering
where human lives may depend on accurate and
reproducible calculations.

Fortunately, there are solutions to this problem. The
GNU Multiple Precision Floating-Point Reliably
(MPFR) library [1] is a software solution that provides
arbitrary precision floating point arithmetic.
Unfortunately, software solutions like MPFR are 2-3
orders of magnitude slower than performing the
equivalent operations in hardware. In applications where
precision and performance are both first-order
requirements, scientists and engineers must rely on
algorithms with known, but non-zero error.

An alternative solution to this problem is to support
complete (ie. No loss of precision) floating point
arithmetic in hardware. Unfortunately, the cost of such a
proposal is huge: IEEE double precision floating point
has an exponent range from -1022 to 1023, which means
more than 2045 bits are required to represent a single
double exactly! In addition, the hardware cost of

supporting every floating point operation on so many
bits is enormous.

In this paper, we propose a compromise: a hardware
accelerator for dot product without loss of precision. We
amortize the cost of the hardware over long sequences of
floating point operations. Given the ubiquity of dot
product in mathematics, we believe providing this
particular operation at high speed with no loss of
precision could greatly benefit scientific computation
and engineering.

2 BACKGROUND
The idea of an exact dot product goes back to the

days of mechanical calculators. In addition to the four
elementary operations (addition, subtraction,
multiplication, and division), calculators often had a fifth
operation: “running total.” The result register was much
wider than the input registers, allowing for accumulation
without loss of precision. This is very similar
functionality to our proposed exact dot product
accelerator.

 Hardware acceleration of exact dot product has its
own history as well. Ulrich Kulisch has been making the
case for such acceleration for over two decades and was
instrumental in the creation of the XPA 3233 co-
processor in the early 1990s [2]. The XPA 3233 was
made of 207,000 transistors and was connected to the
PC through a PCI-bus. The latency of the PCI-bus
greatly limited the usefulness of the XPA 3233.

Today, CPUs are comprised of billions of
transistors, but dark silicon prevents all of the transistors
from being powered at the same time. On-die hardware
accelerators are a popular approach to improving
performance despite this problem [3]. Our proposed
accelerator fits right into this category. Transistors are
cheap but calculations are expensive; we propose
dedicating some of the excess area to accelerating a key
operation while providing both exactness and
reproducibility.

The highly parameterizable hardware construction
language CHISEL [4] and the open-source RISC-V ISA
and RoCC co-processor interface [5] provide us with the
ability to explore a large space of realistic design points
for a potential accelerator.

2.1 Principal of Operation
The basis of our proposed Exact Dot Product
Accelerator (EDPA) is an exact representation of entire
space produced by the product of two floating point
numbers. For the product of two arbitrary floating points
with the representation (-1)s * m x 2e, 2*(ebits + mbits) bits
are required to represent the product exactly. To prevent
overflow over a long accumulation, an additional k bits
are added.

For IEEE Double Precision:
mbits = 53, ebits = 2047, k = 92: CRbits = 4288 (67
words)
For IEEE Single Precision:
mbits = 24, ebits = 256, k = 86: CRbits = 640 (10 words)

Unless otherwise specified, all further examples assume
double precision.
To manage this size, additions to the CR are done in
place. Thus, to add A*B, A,B ∈ FP to the CR, all of the
studied implementations do the following (illustrated in
Fig. 1).

1. C = A * B is computed without truncation.
mbits,prod = 2*mbits,op = 106, e = e + 1 = 12

2. mprod is shifted into alignment with the word
boundaries of the CR, based on the lower
log2(WCRW) bits of eprod, where WCRW is the
width of a CR segment.

3. The remaining bits of eprod address the particular
words of the CR the product to which the
mprod,shifted will be added.

4. The sum of the CR segments and mprod are
computed and written back in place.

5. If necessary, any carry or borrow produced by
the initial sum is resolved.

Fig. 1. High-Level Exact Dot Product Architecture

2.2 Architecture
The EDP implementations presented throughout the

rest of this paper are based about the RoCC co-processor
interface, with the EDP accelerator accepting custom
RoCC instructions from a RISC-V Rocket CPU. The
accelerator also has a dedicated port to the L1 Data
Cache. Fig. 2. below shows a high-level diagram of the
configuration

Fig. 2. High-level Rocket-EDPA System Diagram

In order to control the accelerator, we implemented

the following RoCC instructions:

Fig. 3. EDP Accelerator RoCC Instruction Encodings

Hence, the typical use case of the EDP accelerator
involves sequences of Reset, Prepare DP, Run DP, and
Read Double. While the user is not precluded from
reading intermediate values between separate dot
products, the EDPA cannot be interrupted while
computing a dot product.

3 MICROARCHITECTURE
Every implementation of the presented EDPA, can be
broken down into three major components:

1. Control: Responsible for decoding RoCC
instructions and fetching operands from memory
to feed the accelerator.

2. Front-end Datapath: Evaluates products of
incoming operands and shifts them into
alignment with CR.

3. Accumulator CR : Accumulates incoming
products in place to the CR.

Full descriptions of each component and their
architectural parameters follow.

3.1 Control
The control unit is responsible for accepting

commands from the host processor and funneling data
from memory to the datapath. It also rounds the CR in
response to Read commands, loads the CR from
memory, and stores the CR to memory. The control unit
has three parts: the control state machines, rounding
logic, and memory control logic.

3.1.1 State Machines
For simplicity and verifiability, we implemented

mutually exclusive state machines (SMs) for each of the
supported instructions. This decision led to some
functional and state replication, but made designing and
debugging significantly simpler.

3.1.2 Rounding Logic
The rounding logic takes two 64-bit words from the

read SM and outputs a rounded double. Using a priority
encoder to find the most significant bit, the rounding
logic selects the appropriate most significant 52 bits for
the mantissa (ignoring the implicit most significant bit of
1). It negates the mantissa if necessary since the CR is a
signed fixed point number while the mantissa of a
floating point number is unsigned. The exponent is
calculated as shown in (1).

(1) exp = (CRMSW - WZERO) << 6 + bias + msb - bZERO

CRMSW is the index of the 64-bit word in the CR
containing the most significant bit of the current sum.
WZERO refers to the 64-bit word of the CR that contains
the bit representing 20. The bias comes from the IEEE
standard. msb is the index of the most significant bit in
the most significant word in the CR. bZERO refers which
bit in WZERO represents 20. These are constants that
depend on the floating point standard. For IEEE double
precision, WZERO = 33 and bZERO = 37.

3.1.3 Memory Unit
The memory unit in Fig. 4. shows the logic and

state elements required to move data from memory to
the datapath as quickly as possible. The control unit
alternates issuing loads from each array. When a load is
issued for a particular array, the memory request tag is
enqueued into the respective Memory Request Tag
Queue (MRTQ) and the unified Memory Response Tag
Store (MRTS). As the cache responds to load requests,
the responses are stored in the Memory Response Data
Store (MRDS). The front element of each MRTQ is
matched against the tags in the MRTS; when the data
corresponding to the matching tag becomes valid in the

MRDS, the data is forwarded to the respective Datapath
Staging Queue (DPQ) and the entries in the MRTQ,
MRTS, and MRDS are freed. When both DPQs have a
valid entry, the DPQs simultaneously issue their
respective floating point data into the datapath.

Fig. 4. Control Memory Unit

Given how predictable the data access pattern is for
the EDPA, one of the biggest optimizations we
implemented was a prefetcher. The idea is simple, every
time the control unit issues a load to the start of a cache
block, the prefetcher issues a prefetch request to a future
block. The number of blocks ahead to prefetch is
parameterized because different cache configurations
will require prefetching further ahead.

3.2 Front-end Datapath
The front-end consists of three modules:
1. Exponent Adder (ExpAdder)
2. Multiplier
3. Shifter

These modules are straightforward. Aside from some

initial floating point decoding (eg. prepending one to the
mantissa or zero properly handle denormal numbers),
the functionality of these blocks was expressed with
Chisel’s +, *, << operators respectively. The only
parameterization in these modules was the generation of
input and output registers. We found that design
compiler would properly infer the correct synthetic
module based on the amount of registering we appended
or prepended to each block. Note that addition and
multiple occur in parallel and thus have the same
latency, hence Ltot = Lmult + Lshift.

Architectural Parameters:
1. Shifter Latency: 1 – 2 cycles
2. Multiply Latency: 1 – 4 cycles

3.3 Accumulator – Complete Register (CR)
The complete register is perhaps the most

sophisticated component of the EDPA. We present two
different schemes, one with adders distributed across the
CR’s length (Segmented) and one with a shared adder
must read the appropriate subwords of the CR upon
accumulation (Centralized).

3.3.1 Segmented Accumulator CR
This implementation slices up the CR into

segments of width k, each with its own k bit adder. In a
single cycle, a segment adds a portion of the mprod and
incorporates an incoming carry or borrow if present. If a
carry or borrow is produced it is latched, where it be
further propagated in the next cycle, akin to the
implementation of a carry-save multiplier.

To ease carry propagation, and for most
significant word detection, each segment includes two
flags to denote if the segment is all high or all low.

Fig. 5. Segmented Accumulator CR

Architecture Parameters:
• Segment Width: 16, 32, 64 bits

3.3.2 Centralized Accumulator CR
Given that the multiplicand for double precision

floating point is 106 bits, we decided it would be prudent
to implement a CR where a single adder is shared for
accumulation. The centralized accumulator
microarchitecture is shown in Fig. 6. below.

Fig. 6. Centralized Accumulator CR

The accumulator accepts the 192-bit summand from
the shifter (106-bits with zero padding on either side),
which has already been aligned to the 64-bit words in
the CR. It reads the appropriate 4 words (as indicated by
the summed exponents), and adds the summand to the
bottom 3. The 4th word is incremented or decremented
in the event of a carry or borrow respectively. The
resulting sum is then written back to the CR during the
next cycle.

It is possible for a carry or borrow to propagate
beyond the 4th word. A common example of this is
when the sign of the entire CR flips requiring
carry/borrow propagation all the way past the top word.
We accelerate this process by introducing two registers:
allZeros and allOnes. Each register has 1 bit for each
word in the CR and indicates whether the word is filled
with all zeros or all ones respectively. When a carry
propagates beyond the 4th word, the carry logic uses the
allOnes register to find the next word in the CR that is
not all ones. If there is such a word, the pipeline is
stalled while that word is read, incremented, and then
written back. Every word the carry propagated past
(because it was all ones) is switched to being indicated
as all zeros without any reads or writes to the CR. If the
carry propagates past the highest word, then no pipeline
stall is necessary as the carry is handled by modifying
the all ones and all zeros registers. Borrows work in the

same way except that borrows propagate past words that
are all zeros, turning those words to all ones. One subtle
point is that any time a word is read from the CR, the
allZeros and allOnes registers are used to select whether
the output of the CR or the appropriate all zero or all
ones constant is used.

3.3.2.1 Register Accumulator CR

Implementing the CR as registers is the most
naïve approach and serves as a good baseline for
comparing to SRAM configurations. The register
accumulator follows the above description exactly
except that the summand can be written back in the same
cycle it was calculated.

3.3.2.2 SRAM—8T, 1 Read, 1 Write
The most obvious energy and area efficient CR

implementation is a dual-ported SRAM that can support
reading the CR for an accumulation while writing back the
previous summand. The only modification to the description
above is that there must be a forwarded path from writeback to
the read port since back-to-back accumulates may touch the
same words in the CR.

3.3.2.3 SRAM—6T, 1 Read/Write Port
The 1 read/write port SRAM is very similar to

the previous implementation except that reading and
writing the CR can only occur in separate cycles. Thus,
this configuration of the accumulator CR can only
accept 1 accumulate every other cycle. It also takes 2
cycles to propagate a carry/borrow (unless it propagates
beyond the top word as previously discussed). Given a
standard 64-bit memory interface like the one provided
by RoCC, each accumulate requires 2 reads anyway.
Thus, accumulating every other cycle is sufficient in
such a memory-bound system.

4 RESULTS
To evaluate the effectiveness of various

implementations of the EDPA, we used two distinct
flows:

4.1 System Level Benchmarking
To avoid the lengthy runtimes associated with

running the proxy kernel (and with the intention of
eventually running gate-level power estimation), we ran
the bulk of the succeeding benchmarks bare-metal, using
a framework derived from riscv-tools/riscv-benchmarks.
Because the full system memory interface was limited to
64-bits, we also ran some EDP-level benchmarks to
measure accelerator performance with a perfect cache.

4.2 Accelerator-level VLSI Flow
Initially, EDP design space was explored by

pushing the entire system (Rocket + EDP) through both
synthesis and place and route. However, since we found
that our architectural knobs trivially changed benchmark
performance (cycle count) and we were not able to get
gate-level simulation working, we compiled the bulk of
our design points without Rocket. This allowed us to
aggressively use JackHammer to sweep over our design
space for multiple clock rate targets, using both RVT
and multi-VT flows. All area, timing and power
numbers were gathered from icc after chip-finishing,
power measurements, therefore use ICC default activity
factor of 10%.

4.3 Benchmarking Results
While the primary purpose of the EDPA is exact

and reproducible floating point dot product, its
performance is also central to our evaluation.
Unfortunately, the RoCC memory interface is limited to
a single 64-bit request per cycle, so it was impossible for
us to saturate our datapath in full system simulation.
Nevertheless, our accelerator vastly outperformed
Rocket+FPU despite less than 50% utilization. Fig. 7.
below shows the number of cycles required to execute a
set of benchmarks on the four primary configurations of
our design as well as on Rocket. DP N stands for dot
product with vectors of length N. Matmul NxN stands
for matrix multiply of two matrices, each of size NxN.

Fig. 7. Full System Simulation Performance (cycles)

As Fig. 7. illustrates, on each of the common
benchmarks, the EDPA performed very well.
Prefetching increased performance over 2x for dot
product and still a significant amount for large matrix
multiplication (and the memory system was still far from
saturated). An important distinction here is that while the
dot products and matrix multiplications run on the

EDPA gave the correct result, every benchmark on
Rocket gave incorrect results. We included the Kahan
Summation dot products to show that algorithms that
reduce error add overhead yet are still less accurate that
our accelerator.

While we were unable to run MPFR on Rocket, we
did compare MPFR running on an x86 server to
hardware floating point in order to get an idea of the
overhead of exact floating point in software. We found
that MPFR ran 2-3 orders of magnitude slower than
hardware. EDPA runs 3-6x faster than hardware floating
point, yet retains the accuracy of MPFR which runs on
the order of 100-1000x slower. To be fair, MPFR does
much more than dot product and is not intended to
accelerate that function alone; however, this comparison
does illustrate the overhead of exact dot product in
software.

One aspect Fig. 7. does not show is any
differentiation between the segmented CR and the dual-
ported SRAM CR implementations. This is due to the
full system memory’s inability to saturate the EDPA. It
is fundamentally limited by a 64-bit interface. We also
ran lone accelerator simulations with a perfect cache to
determine accelerator performance when it is fully
saturated. See Fig. 8.

Fig. 8. 64-bit vs. 128-bit Memory Interface (Perfect Cache)

Each configuration executed a dot product with
vectors of length 10,000. As expected, with only half
utilization, each configuration took just over 20,000
cycles to complete. The interesting point is when the
memory is capable of reading two loading per cycle.
Both the segmented and 1R,1W ported SRAM are
designed to handle a multiply-accumulate every cycle,
thus they both finish about as fast as the control could
pass the data. The 1RW ported SRAM can only accept 1
multiply-accumulate every other cycle, so it still took the
same amount of time despite the increased memory
bandwidth.

4.4 VLSI Results
Summarized in Fig. 8, are power and area estimates for
three full-system design points, Rocket alone, Rocket
with Segmented EDP, and Rocket with n Centralized-
SRAM EDP. The target clock period was 3.5 ns, using
only RVT cells.

Fig. 9. Total Area and ICC Power estimations for a

complete Rocket + EDPA system

Fig. 10 below presents energy estimations for 119
parameterizations of the EDPA, across a variety of
frequencies. It took considerably less effort for ICC to
place and route the centralized designs over segmented
ones, even though a couple segmented parameterizations
with small segmented widths successfully closed timing
at 571 MHz – comparable to some of the faster
centralized implementations. We suspect dedicated
floorplans for Segmented implementations would meet
tighter timings.

Fig. 10. Energy consumption for a single run of DP10000.

Note, C = Centralized-SRAM, S = Segmented, CReg =
Centralized-Registered. M = MVT, R = RVT cells

Perhaps the most important result of Fig. 10 is that the
centralized-SRAM implementations lie exclusively
along the pareto-efficient energy frontier, though
segmented implementations come close at the minimum-
energy point. Moreover, multi-threshold voltage designs
significantly outperform the standard except around
500MHz. This is perhaps because the increasing use of
LVT cells counteracts the gains once provided by HVT,
roughly equating to an all-RVT design.

Fig. 11. Cell count by threshold voltages for

parameterizations of Centralized-SRAM.

For the remaining figures, we study centralized-SRAM
configurations more carefully. We found that using an
multi-threshold voltage flow was critical in enabling the
flow to meet timing past 500 MHz. Fig. 11, above
demonstrates the increased presence of LVT cells in
faster designs.

Additionally, deeply pipelining the front-end datapath
was crucial beyond 500 MHz, with parameterizations
with pipeline depths of 5 or 6 stages through the
multiplier performing best at these frequencies. (It was
difficult to meet timing otherwise.) Fig. 12 below speaks
to this increase in pipelining – while accumulator-CR
and control power dissipation hold steady and fall
respectively, the multiplier, shifter and exponent adder
(not shown) all increase.

Fig. 12. Fraction of power dissipation in three largest

consumers.

5 CONCLUSION AND FUTURE WORK
In this paper, we proposed a solution to the need for

high-speed, reproducible, exact floating point. We
explored the design space of an exact dot product

accelerator that significantly outperformed a standard
floating point unit while maintaining the complete
precision of the product. While we are please with the
way the project came together, there are several
directions we hope to take the project.

First, our power results are mostly from standard icc
activity factor guesses. We would like to get full system
benchmarking running in PrimeTime PX to get a better
idea how our energy efficient our accelerator is
compared to standard floating point operations and
software based solutions. It is also important to get
software libraries like MPFR ported to RISC-V for more
direct comparison.

Second, given the memory bandwidth limitations of
the current RoCC interface, we would like to connect
our accelerator directly to the L2 cache in the hope we
might better saturate the datapath.

Third, we are interested in how exact dot product
might be implemented in a vector unit. The RISC-V
Hwacha vector co-processor is a potential platform for
such evaluation. It may be that most of the benefits of
our accelerator can achieved by a more general purpose
computing platform.

Fourth, implementing exact dot product as a co-
processor is an interesting experiment, but it still suffers
from the issue of complicating the floating point
programming model when precision and reproducibility
are important. We would like to integrate our accelerator
into the CPU’s floating point unit and see how we might
be able to simplify the programming model (eg. by
saying that FP register 0 is exact) and share hardware
with the FPU, thus saving area and power.

This project has yielded interesting results and
shown that complete floating point arithmetic is possible
in a high-performance and energy-efficient way. It is not
yet clear if an EDPA is the best solution, but we hope to
find the answer to that question in the coming months.

6 REFERENCES
[1] The GNU MPFR Library [Online]. Available

http://www.mpfr.org/
[2] U. Kulisch, “Scala products and complete arithmetic,” in

Computer Arithmetic and Validity, 2nd ed. Berlin,
Germany: de Gruyter, 2013, pp 249-304.

[3] Vo, Huy. "A Case for OS-Friendly Hardware
Accelerators", 7th Annual Workshop on the Interaction
between Operating System and Computer Architecture
(WIVOSCA-2013), at the 40th International Symposium
on Computer Architecture (ISCA-2013), Tel Aviv, Israel,
June 2013.

[4] Chisel [Online]. Available
https://chisel.eecs.berkeley.edu/

[5] RISC-V [Online]. Available http://riscv.org/

