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In this paper we present a coprocessor capable of 
computing a dot product exactly by use of a “complete 
register” (CR) that encodes a fixed point representation 
of the complete IEEE754 double precision space. We 
explore the design space of the coprocessor by running 
simulations on large numbers of distinct configurations. 
Since only the accumulation register is represented 
exactly, we demonstrate that EDP is realizable in silicon 
, requiring additional 11% over Rocket’s area. In 
addition, the accelerator showed speedups of 3-6x over 
a conventional dot product and matrix multiplication 
while providing both exactness and reproducibility. 

1 INTRODUCTION 
Floating point computation is essential to the fields 

of scientific computing and engineering. Despite near 
universal use, most people are unaware that floating 
point is imprecise by its very nature. Where arithmetic 
operations like addition and multiplication exhibit the 
communicative and associative properties, intermediate 
rounding means the corresponding floating point 
operations do not. This poses a significant problem in 
safety critical areas like civil and nuclear engineering 
where human lives may depend on accurate and 
reproducible calculations.  

Fortunately, there are solutions to this problem. The 
GNU Multiple Precision Floating-Point Reliably 
(MPFR) library [1] is a software solution that provides 
arbitrary precision floating point arithmetic. 
Unfortunately, software solutions like MPFR are 2-3 
orders of magnitude slower than performing the 
equivalent operations in hardware. In applications where 
precision and performance are both first-order 
requirements, scientists and engineers must rely on 
algorithms with known, but non-zero error.  

An alternative solution to this problem is to support 
complete (ie. No loss of precision) floating point 
arithmetic in hardware. Unfortunately, the cost of such a 
proposal is huge: IEEE double precision floating point 
has an exponent range from -1022 to 1023, which means 
more than 2045 bits are required to represent a single 
double exactly! In addition, the hardware cost of 

supporting every floating point operation on so many 
bits is enormous.  

In this paper, we propose a compromise: a hardware 
accelerator for dot product without loss of precision. We 
amortize the cost of the hardware over long sequences of 
floating point operations. Given the ubiquity of dot 
product in mathematics, we believe providing this 
particular operation at high speed with no loss of 
precision could greatly benefit scientific computation 
and engineering.  

2 BACKGROUND 
The idea of an exact dot product goes back to the 

days of mechanical calculators. In addition to the four 
elementary operations (addition, subtraction, 
multiplication, and division), calculators often had a fifth 
operation: “running total.” The result register was much 
wider than the input registers, allowing for accumulation 
without loss of precision. This is very similar 
functionality to our proposed exact dot product 
accelerator. 

 Hardware acceleration of exact dot product has its 
own history as well. Ulrich Kulisch has been making the 
case for such acceleration for over two decades and was 
instrumental in the creation of the XPA 3233 co-
processor in the early 1990s [2]. The XPA 3233 was 
made of 207,000 transistors and was connected to the 
PC through a PCI-bus. The latency of the PCI-bus 
greatly limited the usefulness of the XPA 3233. 

Today, CPUs are comprised of billions of 
transistors, but dark silicon prevents all of the transistors 
from being powered at the same time. On-die hardware 
accelerators are a popular approach to improving 
performance despite this problem [3]. Our proposed 
accelerator fits right into this category. Transistors are 
cheap but calculations are expensive; we propose 
dedicating some of the excess area to accelerating a key 
operation while providing both exactness and 
reproducibility.  

The highly parameterizable hardware construction 
language CHISEL [4] and the open-source RISC-V ISA 
and RoCC co-processor interface [5] provide us with the 
ability to explore a large space of realistic design points 
for a potential accelerator. 



2.1 Principal of Operation 
The basis of our proposed Exact Dot Product 
Accelerator (EDPA) is an exact representation of entire 
space produced by the product of two floating point 
numbers. For the product of two arbitrary floating points 
with the representation (-1)s * m x 2e, 2*(ebits + mbits) bits 
are required to represent the product exactly. To prevent 
overflow over a long accumulation, an additional k bits 
are added. 

For IEEE Double Precision:   
mbits = 53, ebits = 2047, k =  92: CRbits = 4288 (67 
words) 
For IEEE Single Precision:   
mbits = 24, ebits = 256, k =  86: CRbits = 640 (10 words) 
 

Unless otherwise specified, all further examples assume 
double precision.  
To manage this size, additions to the CR are done in 
place. Thus, to add A*B, A,B ∈ FP  to the CR, all of the 
studied implementations do the following (illustrated in 
Fig. 1).  

1. C = A * B is computed without truncation.  
mbits,prod = 2*mbits,op = 106, e = e + 1 = 12  

2. mprod is shifted into alignment with the word 
boundaries of the CR, based on the lower 
log2(WCRW) bits of eprod, where WCRW is the 
width of a CR segment.  

3. The remaining bits of eprod address the particular 
words of the CR the product to which the 
mprod,shifted will be added.  

4. The sum of the CR segments and mprod are 
computed and written back in place. 

5. If necessary, any carry or borrow produced by 
the initial sum is resolved.  

 

 
Fig. 1.  High-Level Exact Dot Product Architecture 

2.2 Architecture 
The EDP implementations presented throughout the 

rest of this paper are based about the RoCC co-processor 
interface, with the EDP accelerator accepting custom 
RoCC instructions from a RISC-V Rocket CPU. The 
accelerator also has a dedicated port to the L1 Data 
Cache. Fig. 2.  below shows a high-level diagram of the 
configuration 

 



 
Fig. 2.  High-level Rocket-EDPA System Diagram 

 
In order to control the accelerator, we implemented 

the following RoCC instructions:  
 

 
Fig. 3.  EDP Accelerator RoCC Instruction Encodings 

Hence, the typical use case of the EDP accelerator 
involves sequences of Reset, Prepare DP, Run DP, and 
Read Double. While the user is not precluded from 
reading intermediate values between separate dot 
products, the EDPA cannot be interrupted while 
computing a dot product. 

 

3 MICROARCHITECTURE 
Every implementation of the presented EDPA, can be 
broken down into three major components: 
 

1. Control: Responsible for decoding RoCC 
instructions and fetching operands from memory 
to feed the accelerator.  

2. Front-end Datapath: Evaluates products of 
incoming operands and shifts them into 
alignment with CR.  

3. Accumulator  CR : Accumulates incoming 
products in place to the CR. 

  
Full descriptions of each component and their 
architectural parameters follow.  

3.1 Control 
The control unit is responsible for accepting 

commands from the host processor and funneling data 
from memory to the datapath. It also rounds the CR in 
response to Read commands, loads the CR from 
memory, and stores the CR to memory. The control unit 
has three parts: the control state machines, rounding 
logic, and memory control logic. 

3.1.1 State Machines 
For simplicity and verifiability, we implemented 

mutually exclusive state machines (SMs) for each of the 
supported instructions. This decision led to some 
functional and state replication, but made designing and 
debugging significantly simpler. 

3.1.2 Rounding Logic 
The rounding logic takes two 64-bit words from the 

read SM and outputs a rounded double. Using a priority 
encoder to find the most significant bit, the rounding 
logic selects the appropriate most significant 52 bits for 
the mantissa (ignoring the implicit most significant bit of 
1). It negates the mantissa if necessary since the CR is a 
signed fixed point number while the mantissa of a 
floating point number is unsigned. The exponent is 
calculated as shown in (1). 
 

(1) exp = (CRMSW - WZERO) << 6 + bias + msb - bZERO 
 

CRMSW is the index of the 64-bit word in the CR 
containing the most significant bit of the current sum. 
WZERO refers to the 64-bit word of the CR that contains 
the bit representing 20. The bias comes from the IEEE 
standard. msb is the index of the most significant bit in 
the most significant word in the CR. bZERO refers which 
bit in WZERO represents 20. These are constants that 
depend on the floating point standard. For IEEE double 
precision, WZERO = 33 and bZERO = 37. 

3.1.3 Memory Unit 
The memory unit in Fig. 4. shows the logic and 

state elements required to move data from memory to 
the datapath as quickly as possible. The control unit 
alternates issuing loads from each array. When a load is 
issued for a particular array, the memory request tag is 
enqueued into the respective Memory Request Tag 
Queue (MRTQ) and the unified Memory Response Tag 
Store (MRTS). As the cache responds to load requests, 
the responses are stored in the Memory Response Data 
Store (MRDS). The front element of each MRTQ is 
matched against the tags in the MRTS; when the data 
corresponding to the matching tag becomes valid in the 



MRDS, the data is forwarded to the respective Datapath 
Staging Queue (DPQ) and the entries in the MRTQ, 
MRTS, and MRDS are freed. When both DPQs have a 
valid entry, the DPQs simultaneously issue their 
respective floating point data into the datapath. 

 
Fig. 4.  Control Memory Unit 

Given how predictable the data access pattern is for 
the EDPA, one of the biggest optimizations we 
implemented was a prefetcher. The idea is simple, every 
time the control unit issues a load to the start of a cache 
block, the prefetcher issues a prefetch request to a future 
block. The number of blocks ahead to prefetch is 
parameterized because different cache configurations 
will require prefetching further ahead. 

3.2 Front-end Datapath 
The front-end consists of three modules:  
1. Exponent Adder (ExpAdder) 
2. Multiplier  
3. Shifter 

 
These modules are straightforward. Aside from some 

initial floating point decoding (eg. prepending one to the 
mantissa or zero properly handle denormal numbers), 
the functionality of these blocks was expressed with 
Chisel’s +, *, << operators respectively. The only 
parameterization in these modules was the generation of 
input and output registers. We found that design 
compiler would properly infer the correct synthetic 
module based on the amount of registering we appended 
or prepended to each block. Note that addition and 
multiple occur in parallel and thus have the same 
latency, hence Ltot = Lmult + Lshift.  

Architectural Parameters: 
1. Shifter Latency: 1 – 2 cycles 
2. Multiply Latency: 1 – 4 cycles 

3.3 Accumulator – Complete Register (CR) 
The complete register is perhaps the most 

sophisticated component of the EDPA. We present two 
different schemes, one with adders distributed across the 
CR’s length (Segmented) and one with a shared adder 
must read the appropriate subwords of the CR upon 
accumulation (Centralized). 

3.3.1 Segmented Accumulator CR 
This implementation slices up the CR into 

segments of width k, each with its own k bit adder. In a 
single cycle, a segment adds a portion of the mprod and 
incorporates an incoming carry or borrow if present. If a 
carry or borrow is produced it is latched, where it be 
further propagated in the next cycle, akin to the 
implementation of a carry-save multiplier.  

To ease carry propagation, and for most 
significant word detection, each segment includes two 
flags to denote if the segment is all high or all low.  

 
Fig. 5.  Segmented Accumulator CR 

Architecture Parameters: 
• Segment Width: 16, 32, 64 bits 

 

3.3.2 Centralized Accumulator CR 
Given that the multiplicand for double precision 

floating point is 106 bits, we decided it would be prudent 
to implement a CR where a single adder is shared for 
accumulation. The centralized accumulator 
microarchitecture is shown in Fig. 6.  below.  

 
 



 
Fig. 6.  Centralized Accumulator CR 

The accumulator accepts the 192-bit summand from 
the shifter (106-bits with zero padding on either side), 
which has already been aligned to the 64-bit words in 
the CR. It reads the appropriate 4 words (as indicated by 
the summed exponents), and adds the summand to the 
bottom 3. The 4th word is incremented or decremented 
in the event of a carry or borrow respectively. The 
resulting sum is then written back to the CR during the 
next cycle.  

It is possible for a carry or borrow to propagate 
beyond the 4th word. A common example of this is 
when the sign of the entire CR flips requiring 
carry/borrow propagation all the way past the top word. 
We accelerate this process by introducing two registers: 
allZeros and allOnes. Each register has 1 bit for each 
word in the CR and indicates whether the word is filled 
with all zeros or all ones respectively. When a carry 
propagates beyond the 4th word, the carry logic uses the 
allOnes register to find the next word in the CR that is 
not all ones. If there is such a word, the pipeline is 
stalled while that word is read, incremented, and then 
written back. Every word the carry propagated past 
(because it was all ones) is switched to being indicated 
as all zeros without any reads or writes to the CR. If the 
carry propagates past the highest word, then no pipeline 
stall is necessary as the carry is handled by modifying 
the all ones and all zeros registers. Borrows work in the 

same way except that borrows propagate past words that 
are all zeros, turning those words to all ones. One subtle 
point is that any time a word is read from the CR, the 
allZeros and allOnes registers are used to select whether 
the output of the CR or the appropriate all zero or all 
ones constant is used. 

3.3.2.1 Register Accumulator CR 

Implementing the CR as registers is the most 
naïve approach and serves as a good baseline for 
comparing to SRAM configurations.  The register 
accumulator follows the above description exactly 
except that the summand can be written back in the same 
cycle it was calculated. 

3.3.2.2 SRAM—8T, 1 Read, 1 Write 
The most obvious energy and area efficient CR 

implementation is a dual-ported SRAM that can support 
reading the CR for an accumulation while writing back the 
previous summand. The only modification to the description 
above is that there must be a forwarded path from writeback to 
the read port since back-to-back accumulates may touch the 
same words in the CR. 

3.3.2.3 SRAM—6T,  1 Read/Write Port 
The 1 read/write port SRAM is very similar to 

the previous implementation except that reading and 
writing the CR can only occur in separate cycles. Thus, 
this configuration of the accumulator CR can only 
accept 1 accumulate every other cycle. It also takes 2 
cycles to propagate a carry/borrow (unless it propagates 
beyond the top word as previously discussed). Given a 
standard 64-bit memory interface like the one provided 
by RoCC, each accumulate requires 2 reads anyway. 
Thus, accumulating every other cycle is sufficient in 
such a memory-bound system. 
 

4 RESULTS 
To evaluate the effectiveness of various 

implementations of the EDPA, we used two distinct 
flows:  

4.1  System Level Benchmarking  
To avoid the lengthy runtimes associated with 

running the proxy kernel (and with the intention of 
eventually running gate-level power estimation), we ran 
the bulk of the succeeding benchmarks bare-metal, using 
a framework derived from riscv-tools/riscv-benchmarks. 
Because the full system memory interface was limited to 
64-bits, we also ran some EDP-level benchmarks to 
measure accelerator performance with a perfect cache. 

 



 

4.2 Accelerator-level VLSI Flow 
Initially, EDP design space was explored by 

pushing the entire system (Rocket + EDP) through both 
synthesis and place and route. However, since we found 
that our architectural knobs trivially changed benchmark 
performance (cycle count) and we were not able to get 
gate-level simulation working, we compiled the bulk of 
our design points without Rocket. This allowed us to 
aggressively use JackHammer to sweep over our design 
space for multiple clock rate targets, using both RVT 
and multi-VT flows.  All area, timing and power 
numbers were gathered from icc after chip-finishing, 
power measurements, therefore use ICC default activity 
factor of 10%.  

4.3 Benchmarking Results  
While the primary purpose of the EDPA is exact 

and reproducible floating point dot product, its 
performance is also central to our evaluation. 
Unfortunately, the RoCC memory interface is limited to 
a single 64-bit request per cycle, so it was impossible for 
us to saturate our datapath in full system simulation. 
Nevertheless, our accelerator vastly outperformed 
Rocket+FPU despite less than 50% utilization. Fig. 7.  
below shows the number of cycles required to execute a 
set of benchmarks on the four primary configurations of 
our design as well as on Rocket. DP N stands for dot 
product with vectors of length N. Matmul NxN stands 
for matrix multiply of two matrices, each of size NxN. 

 
Fig. 7.  Full System Simulation Performance (cycles) 

As Fig. 7. illustrates, on each of the common 
benchmarks, the EDPA performed very well. 
Prefetching increased performance over 2x for dot 
product and still a significant amount for large matrix 
multiplication (and the memory system was still far from 
saturated). An important distinction here is that while the 
dot products and matrix multiplications run on the 

EDPA gave the correct result, every benchmark on 
Rocket gave incorrect results. We included the Kahan 
Summation dot products to show that algorithms that 
reduce error add overhead yet are still less accurate that 
our accelerator.  

While we were unable to run MPFR on Rocket, we 
did compare MPFR running on an x86 server to 
hardware floating point in order to get an idea of the 
overhead of exact floating point in software. We found 
that MPFR ran 2-3 orders of magnitude slower than 
hardware. EDPA runs 3-6x faster than hardware floating 
point, yet retains the accuracy of MPFR which runs on 
the order of 100-1000x slower. To be fair, MPFR does 
much more than dot product and is not intended to 
accelerate that function alone; however, this comparison 
does illustrate the overhead of exact dot product in 
software.  

One aspect Fig. 7. does not show is any 
differentiation between the segmented CR and the dual-
ported SRAM CR implementations. This is due to the 
full system memory’s inability to saturate the EDPA. It 
is fundamentally limited by a 64-bit interface. We also 
ran lone accelerator simulations with a perfect cache to 
determine accelerator performance when it is fully 
saturated. See Fig. 8.  
 

 
Fig. 8.  64-bit vs. 128-bit Memory Interface (Perfect Cache) 

Each configuration executed a dot product with 
vectors of length 10,000. As expected, with only half 
utilization, each configuration took just over 20,000 
cycles to complete. The interesting point is when the 
memory is capable of reading two loading per cycle. 
Both the segmented and 1R,1W ported SRAM are 
designed to handle a multiply-accumulate every cycle, 
thus they both finish about as fast as the control could 
pass the data. The 1RW ported SRAM can only accept 1 
multiply-accumulate every other cycle, so it still took the 
same amount of time despite the increased memory 
bandwidth.  

4.4 VLSI Results   
Summarized in Fig. 8, are power and area estimates for 
three full-system design points, Rocket alone, Rocket 
with Segmented EDP, and Rocket with n Centralized-
SRAM EDP.  The target clock period was 3.5 ns, using 
only RVT cells.  
 



 
Fig. 9.  Total Area and ICC Power estimations for a 

complete Rocket + EDPA system 

 
Fig. 10 below presents energy estimations for 119 
parameterizations of the EDPA, across a variety of 
frequencies. It took considerably less effort for ICC to 
place and route the centralized designs over segmented 
ones, even though a couple segmented parameterizations 
with small segmented widths successfully closed timing 
at 571 MHz – comparable to some of the faster 
centralized implementations. We suspect dedicated 
floorplans for Segmented implementations would meet 
tighter timings.  
 

 
Fig. 10.   Energy consumption for a single run of DP10000. 

Note, C = Centralized-SRAM, S = Segmented, CReg  = 
Centralized-Registered. M = MVT, R = RVT cells 

Perhaps the most important result of Fig. 10 is that the 
centralized-SRAM implementations lie exclusively 
along the pareto-efficient energy frontier, though 
segmented implementations come close at the minimum-
energy point. Moreover, multi-threshold voltage designs 
significantly outperform the standard except around 
500MHz. This is perhaps because the increasing use of 
LVT cells counteracts the gains once provided by HVT, 
roughly equating to an all-RVT design.  
 

 
Fig. 11.  Cell count by threshold voltages for 

parameterizations of Centralized-SRAM. 

For the remaining figures, we study centralized-SRAM 
configurations more carefully. We found that using an 
multi-threshold voltage flow was critical in enabling the 
flow to meet timing past 500 MHz. Fig. 11, above 
demonstrates the increased presence of LVT cells in 
faster designs.   
 
Additionally, deeply pipelining the front-end datapath 
was crucial beyond 500 MHz, with parameterizations 
with pipeline depths of 5 or 6 stages through the 
multiplier performing best at these frequencies. (It was 
difficult to meet timing otherwise.) Fig. 12 below speaks 
to this increase in pipelining – while accumulator-CR 
and control power dissipation hold steady and fall 
respectively, the multiplier, shifter and exponent adder 
(not shown) all increase.  

 
Fig. 12.  Fraction of power dissipation in three largest 

consumers.  

5 CONCLUSION AND FUTURE WORK 
In this paper, we proposed a solution to the need for 

high-speed, reproducible, exact floating point. We 
explored the design space of an exact dot product 



accelerator that significantly outperformed a standard 
floating point unit while maintaining the complete 
precision of the product. While we are please with the 
way the project came together, there are several 
directions we hope to take the project. 

First, our power results are mostly from standard icc 
activity factor guesses. We would like to get full system 
benchmarking running in PrimeTime PX to get a better 
idea how our energy efficient our accelerator is 
compared to standard floating point operations and 
software based solutions. It is also important to get 
software libraries like MPFR ported to RISC-V for more 
direct comparison. 

Second, given the memory bandwidth limitations of 
the current RoCC interface, we would like to connect 
our accelerator directly to the L2 cache in the hope we 
might better saturate the datapath.  

Third, we are interested in how exact dot product 
might be implemented in a vector unit. The RISC-V 
Hwacha vector co-processor is a potential platform for 
such evaluation. It may be that most of the benefits of 
our accelerator can achieved by a more general purpose 
computing platform.  

Fourth, implementing exact dot product as a co-
processor is an interesting experiment, but it still suffers 
from the issue of complicating the floating point 
programming model when precision and reproducibility 
are important. We would like to integrate our accelerator 
into the CPU’s floating point unit and see how we might 
be able to simplify the programming model (eg. by 
saying that FP register 0 is exact) and share hardware 
with the FPU, thus saving area and power. 

This project has yielded interesting results and 
shown that complete floating point arithmetic is possible 
in a high-performance and energy-efficient way. It is not 
yet clear if an EDPA is the best solution, but we hope to 
find the answer to that question in the coming months.  
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