Thread Links | Date Links | ||||
---|---|---|---|---|---|
Thread Prev | Thread Next | Thread Index | Date Prev | Date Next | Date Index |
P1788, We submit the attached motion text and supporting position paper forMotion 35 as a friendly amendment. Most of the position paper has been re-written for purposes of clarification.
Thanks to Alexandre, Arnold, Michel, John and others. Nate P.S. John, we answer your question about comparison operations in the rationale.
As described in the accompanying position paper, P1788 shall change the existing Level 1 and Level 2 model to the three-tiered level structure as described in Section 2. Specifically, this means the following: -- The "mathematical intervals" at Level 1 are defined to be the classic set of nonempty, closed and bounded intervals; this will be called the level of "mathematical regularity" (MR) for interval arithmetic. The FTIA, infimum, supremum, midpoint and radius are all defined as in Section 2.1. -- In Level 1a, FTIA is extended to unbounded intervals and the empty set according to (4) and (5); this will be called the level of "algebraic closure" (AC) for interval arithmetic. More specifically, an unbounded interval is interpreted as an overflow family parameterized (virtually) by an overflow threshold, as defined and explained in Section 2.2. -- Level 2 is defined as in Section 2.3; this is the level of "interval datums." The maximal real element of each interval datum format defines the concrete value of each corresponding overflow threshold at Level 1a. -- The midpoint operation is defined at Level 1a and Level 2 as a real number for all overflow families except { empty }. We suggest something similar to what is discussed in Section 3.2 and Table 1, but we leave the actual definition to a future motion. The midpoint of { empty } is undefined. THIS MOTION DOES NOT DEFINE THE MIDPOINT OF AN UNBOUNDED INTERVAL AT ANY LEVEL OF THE STANDARD.
Attachment:
overflow.pdf
Description: Adobe PDF document