Thread Links Date Links
Thread Prev Thread Next Thread Index Date Prev Date Next Date Index

Re: That other flavour...



Dear Michel,


On Mon, Sep 23, 2013 at 7:22 PM, Michel Hack <mhack@xxxxxxx> wrote:
>
> I'm glad I prompted Nate to resurface for a moment.  Here are my very
> cursory notes on his document MIAstandard.pdf of Feb 4, 2013:
>
>   Very nice exposition.  Bounded and semibounded supported, but Empty is
>   not an interval, anc comparisons with Empty are unordered.  Very nice
>   explanation of Modal vs Kaucher vs (what we would call) Common, unified
>   by the Set(interval) operator: { x: min(l,r) <= x <= max(l,r) for [l,r] }
>   Then  proper([l,r])  means  Ex(x in Set([l,r]))    (l <= r)
>         improp([l,r])  means  Ax(x in Set([l,r]))    (l >= r)
>

This is a common misunderstanding of the modal intervals theory. Consider the Kaucher interval operation

[-1,1]+[12,8]=[11,9]

It has two interpretations, using the so called * and ** modal interpretations:

forall x in [-1,1], forall z in [9,11], exists y in [8,12], z=x+y

and

forall y in [8,12], exists z in [9,11], exists x in [-1,1], z=x+y

None of these * or ** interpretations are obtained using the rules

>  proper([l,r])  means  Ex(x in Set([l,r]))    (l <= r)
>  improp([l,r])  means  Ax(x in Set([l,r]))    (l >= r)

you mentioned.

Regards,

Alexandre

--
Dr. Alexandre Goldsztejn

CNRS - Laboratoire d'Informatique de Nantes Atlantique
Office : +33 2 51 12 58 37 Mobile : +33 6 78 04 94 87
Web: www.goldsztejn.com
Email: alexandre.goldsztejn@xxxxxxxxxxxxxx