
DR
AF
T
8.1

Chapter 1
P1788/D8.1, October 26, 2013

Draft Standard For Interval Arithmetic §6.1

(d) Not every interval encoding necessarily encodes an interval object, but when it does, that
object is unique. Each interval object has at least one encoding and might have more than
one.

[Note. Items (c) and (d) are standard and necessary properties of representations. By contrast, the
properties (a) and (b) of the maps from Level 1 to Level 2, and back, are fundamental design decisions
of the standard.]

6. Expressions and the functions they define

6.1. Definitions. An expression is some symbolic form used to define a function—in general
not a static object within program code, but derived dynamically from a particular program
execution. Expressions are central to interval computation, because the Fundamental Theorem of
Interval Arithmetic (FTIA) is about interpreting an expression in different ways:

– as defining a mathematical real point function f ;
– as defining various (depending on the finite precision interval types used) interval functions that
give proven enclosures for the range of f over an input box x;

– as defining corresponding decorated interval functions that can give the stronger conclusion that
f is everywhere defined, or everywhere continuous, on x—enabling, for example, an automatic
check of the hypotheses of the Brouwer Fixed Point Theorem.

The standard specifies behavior, at the individual operation level, that enables such conclusions,
whether or not the notion “expression” exists in a host programming language.

A formal expression defines a relation between certain mathematical variables—the inputs—
and others—the outputs—via the application of named operations. It is by definition an acyclic
(having an acyclic graph, see below) set of dependences between mathematical variables, defined
by equations

v = ϕ(u1, . . . , uk), (1)

where v and the ui come from a nonempty finite set X of variable-symbols; ϕ comes from a finite
set F of formal library operations; k ≥ 0 is the arity of ϕ; and distinct equations have distinct
v’s—the single assignment property.

Three essentially equivalent descriptions of an expression are as follows.

(a) Drawing an edge from each ui to v for each dependence-equation (1) defines the computational
graph G—Figure 6.1(a)—a directed graph over the node set X . The dependences define an
expression if and only if G is acyclic. There is then a nonempty set of output nodes having no
outgoing edge, and a possibly empty set of input nodes having no incoming edge.

 sqr 1

 add

 sqrt

 div

 sub

input v−1 = x1, v0 = x2

v1 = v20
v2 = v1 + 1

v3 =
√
v2

v4 = v−1/v3
v5 = v3 − v4
output y = v5

y =
�

x2
2 + 1− x1�

x2
2 + 1

Computational graph Code list Algebraic expression
(a) (b) (c)

Figure 6.1. Essentially equivalent notations for an expression. In (a), the struc-
ture is shown by labeling nodes with operations only; the order of arguments is
shown by reading incoming edges left to right, e.g., the inputs to sub are the re-
sults of the preceding sqrt and div, in that order. Similarly the input nodes are
x1 and x2 left to right. Note form (c) has redundancy; (a) and (b) do not.

14 October 26, 2013

DR
AF
T
8.1

Chapter 1
P1788/D8.1, October 26, 2013

Draft Standard For Interval Arithmetic §6.3

To apply the FTIA it suffices to consider expressions that are scalar, with a single output.
(All the individual library arithmetic operations of the standard are scalar.)

(b) Since G is acyclic the equations can be ordered so that each one only depends on inputs or
previously computed values, thus representing the expression as a code list—Figure 6.1(b). In
the notation of A. Griewank [2], the inputs are written v1−n, . . . , v0 where n ≥ 0, conventionally
given the aliases x1, . . . , xn, so xi is the same as vi−n. The operations are

vr = ϕr(ur,1, . . . , ur,kr), (r = 1, . . . ,m),

where ϕr ∈ F with arity kr, and each ur,i is a known vj , that is j = j(r, i) < r. (Constants,
which are operations of arity 0, may be referred to directly instead of assigned to a vj .)
Assuming a single output, it is vm, given the alias y, so that the expression defines a formal
function y = f(x1, . . . , xn).

Either m or n but not both can be zero. The case n = 0 and m ≥ 1 gives a constant
expression. If m = 0 and n = 1, there are no operations and y is the same as x1, defining the
identity function y = f(x1) = x1. In general for m = 0 and n ≥ 1 there are n possibilities, the
coordinate projections πj(x1, . . . , xn) = xj (j = 1, . . . , n).

(c) By allowing redundancy, an expression always can be converted to a normal algebraic expres-
sion—Figure 6.1(c)—over the variable-set X and library F , defined recursively as follows:
– if x ∈ X is a variable symbol, then x is an expression;
– if f ∈ F is a function symbol of arity k and if ei is an expression for i = 1, . . . , k then the
function symbol application f(e1, . . . , ek) is an expression.

The redundancy is because this form has no way of referring to intermediate values by name, so
that if such a value is used several times, the subexpression that computes it must be repeated
each time it occurs, see Figure 6.1. If the algebraic expression is evaluated naively, such a
subexpression is evaluated more than once, which affects efficiency but not the numerics of
what is computed.

Because of its simplicity, this is the definition of expression used in the FTIA proof in
Clause D.4.

6.2. Mapping to a library. In IA applications, F and the arity of each of its functions are
defined from the interface of an IA library. Formal expressions typically map to expressions in
languages using IA libraries, or to sections of run-time data-flow in executions of programs using
IA libraries. The statement of the FTIA transfers to applications of IA libraries via appropriate
mapping of a formal expression to a language expression or a section of data-flow. In the absence of
such a mapping, the conclusions of the FTIA cannot be drawn from execution of programs written
in a host language.

Namely, each formal operation in F must have a primary point version with real-number in-
put(s) and output; one or more interval versions with interval input and output; and for each of
these a corresponding decorated interval version. These produce point evaluation, interval evalu-
ation and decorated interval evaluation of the expression, also termed evaluation in point mode,
interval mode or decorated interval mode. Floating-point versions are not relevant to this standard.

The point version is a theoretical (Level 1) function, of which each interval version—there is
at least one for each interval type provided by the implementation—is a finite-precision (Level 2)
interval extension, and each decorated interval version is a decorated interval extension.

In this standard an implementation’s library by definition comprises all its Level 2 versions of
operations that it provides for any of its supported interval types. For the set-based flavor these
are specified in §10.6, §10.7 and in Clause 12. Different interval evaluations of f come from using
library operations of different Level 2 types, as the implementation may provide.

The set operations intersection and convexHull are not point-operations and cannot appear
directly in an arithmetic expression. However they are useful for efficiently implementing interval
extensions of functions defined piecewise, see Example (ii) in §11.8.

6.3. The FTIA. Each library point-operation has a defined domain, the set of inputs where
it can be evaluated. This leads to the idea of natural domain Dom(f) of the point function
f(x) = f(x1, . . . , xn) defined by an expression: the set of points x where f is defined in the sense
that the whole expression can be successfully evaluated.

15 October 26, 2013

DR
AF
T
8.1

Chapter 1
P1788/D8.1, October 26, 2013

Draft Standard For Interval Arithmetic §7.2

[Example. From the domains of / and
√
·, one finds the natural domain of

�
1 + 1/x is the union of

the two intervals −∞ < x ≤ −1 and 0 < x < +∞.]
In the set-based flavor, Moore’s basic theorem for a scalar function is as follows, with the above

notation.

Theorem 6.1 (Fundamental Theorem of Interval Arithmetic). Let y = f(x) be the result of
interval-evaluation of f over a box x = (x1, . . . ,xn) using any interval versions of its component
library functions. Then

(i) (“Basic” form of FTIA.) In all cases, y contains the range of f over x, that is, the set of
f(x) at points of x where it is defined:

y ⊇ Rge(f |x) = { f(x) | x ∈ x ∩Dom(f) }. (2)

(ii) (“Defined” form of FTIA.) If also each library operation in f is everywhere defined on its
inputs, while evaluating y, then f is everywhere defined on x, that is Dom(f) ⊇ x.

(iii) (“Continuous” form of FTIA.) If in addition to (ii), each library operation in f is everywhere
continuous on its inputs, while evaluating y, then f is everywhere continuous on x.

It is important to note that the theorem holds in finite precision, not just at Level 1. The
decoration system gives basic tools for checking the conditions for the “defined” and “continuous”
forms, during evaluation of a function.

6.4. Related issues. When program code contains conditionals (including loops), the run
time data flow and hence the computed expression generally depends on the input data—for
instance the example in §11.8 where a function is defined piecewise. The user is responsible for
checking that a property such as global continuity holds as intended in such cases. The standard
provides no way to check this automatically.

The standard requires that at Level 2, for all interval types, operations and inputs, the inter-
val part of a decorated interval operation equal the corresponding bare interval operation. This
ensures that converting bare interval program code to use decorated intervals leaves the data flow
entirely unchanged (provided no conditionals depend on decoration values)—hence the computed
expression and the interval part of its result are unchanged. If this were not so, there might in
principle be an arbitrarily large discrepancy between the bare and the decorated versions of a
computation that contains conditionals.

7. Flavors

7.1. Flavors overview. The standard permits different interval flavors, which embody dif-
ferent foundational (Level 1) approaches to intervals. An implementation shall provide at least
one flavor. For brevity, phrases such as “A flavor shall provide, or document, a feature” mean that
the implementation of that flavor shall provide the feature, or its documentation describe it.

Flavor is a property of program execution context, not of an individual interval, therefore just
one flavor shall be in force at any point of execution. It is recommended that at the language level,
the flavor should be constant at the level of a procedure/function, or of a compilation unit.

A flavor is identified by a unique name. Certain flavors, termed included, are specified in this
standard. The (list to be confirmed) flavors are the currently included flavors. The procedure for
submitting a new flavor for inclusion is described in Annex B. An implementation that has both
included and non-included flavors is not conforming as a whole, but the part (§3.1) comprising the
included flavors might be conforming.

The flavor concept enforces a common core of behavior that different kinds of interval arith-
metic shall share:

(i) There is a set of common intervals whose members are—in a sense made precise in §7.4—
intervals of any flavor.

(ii) There is a set of library operations, identified by their names, that are required in all flavors;
see Clause 9.

(iii) There is a set of common evaluations of library operations, with common intervals as input,
that give—in a sense made precise in §7.2—the same result in any flavor.

In item (iii) the result means the tightest mathematical (Level 1) result, ignoring any interval
widening due to finite precision (Level 2).

16 October 26, 2013

