Position: That the Standard for Computing
with Intervals Have Only One Level 1
Requirement: Containment.

G. William Walster

August 1, 2011

Acknowledgement 1 Thanks to R. Baker Kearfott for his thoughtful com-
ments and suggestions.

Because no accuracy information is retained in finite-precision normalized
floating-point numbers, it is impossible to create a standard for computing with
them that is accuracy-based. Rather, any floating-point standard must specify
how floating-point computing is implemented.

Intervals are different because they include their accuracy. By including in an
interval implementation standard only the most fundamental interval accuracy
requirement, containment, it is possible to create an interval standard that is
free of any other implementation requirements.

A containment-only interval standard is desirable because any other imple-
mentation requirements must necessarily preclude “quality of implementation
features” that improve interval computing. For example if an implementation-
specific interval standard does not include extended values, they may not exist
in a standard-compliant implementation. Conversely, there must be no re-
quirement to implement extended intervals in a containment-only standard.
Extended intervals are an optional “quality of implementation feature” in a
containment-only standard.

A containment-only interval standard must leave level 2 through 4 implemen-
tation details completely unspecified. The one and only level 1 implementation
requirement must be to enclose the smallest set of values (the containment set)
that must be contained in the interval result of any evaluated arithmetic ex-
pression or function defined therefrom. Given this one and only requirement,
optional “quality of implementation features” include, but are not limited to:
speed; narrow width; ease of use; and both convenient and transparent language
syntax and semantics.

A containment-only interval standard must leave internal binary represen-
tations opaque with no requirement for users to be able to manipulate bits
other than through supplied containment-safe library routines. There must be
no requirement for binary compatibility between hardware platforms, or even



different vendor’s compilers. How any vendor internally represents intervals on
their hardware is also a “quality of implementation feature”. Similarly, there
must be no requirement for a particular set of low level interval operations. The
ultimate “proof of the pudding” for computing with intervals is implementa-
tion quality in terms of speed, narrow width, and ease of interval algorithm
development and use.

With a containment-only interval standard, there are no constrains on how to
achieve quality. For example, a compiler might (as a “quality of implementation
feature”) automate the trade-off between speed and narrow width, depending
on what is good for a given algorithm. What is good for a given algorithm might
be speed given a narrow width requirement, or it might be width given a time
limit.

A containment-only interval standard must define containment sets for any
evaluated arithmetic expression or function defined therefrom. Otherwise, it is
impossible to validate any given implementation; to know how much “quality of
implementation” (in the form of interval width) remains available to be achieved,;
or to determine that any given implementation (no mater the standard on which
it is based) produces a containment failure. Defining containment sets for all
evaluated numerical expressions and functions defined therefrom is a purely
mathematical problem that does not depend on how computing with intervals
is implemented. This, and not level 2 through 4 implementation specifications,
is the sole content of a containment-only interval computing standard.



