
DR
AF
T
6.1

Ch2 Draft 6.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §8.8

final enclosure of the range is bounded, as were all the intermediate intervals. In addition, the function
f is everywhere continuous on the bounded, nonempty input box x. ]

8.8.8. Compressed arithmetic with a threshold (informative).
The compressed decorated interval arithmetic (compressed arithmetic for short) de-

scribed here lets experienced users obtain more efficient execution in applications where the use of
decorations is limited to the context described below. An implementation need not provide it; if
it does so, the behavior described in this subclause is required.

Each Level 2 instance of compressed arithmetic is based on a supported Level 2 bare interval
type T, but is a distinct compressed type derived from its parent type T, with its own objects
and library of operations. Conversions are provided between a compressed type and its parent
type.

Compressed arithmetic uses the standard set of 5 or 6 decorations (13). The context is that,
frequently, the use that is made of a decorated interval function evaluation ydy = f(xdx) depends
on a check of the result decoration dy against an application-dependent exception threshold τ ,
where τ ≥ trv in the propagation order (23):

dy ≥ τ represents normal computation. The decoration is not used, but one exploits the range
enclosure given by the interval part and the knowledge that dy remained ≥ τ .

dy < τ declares an exception to have occurred. The interval part is not used, but one exploits
the information given by the decoration.

For such uses, one needs to store an interval’s value, or its decoration, but never both at once.
A compressed interval is an object whose value is either an arbitrary bare interval (of the parent
type), or an arbitrary bare decoration, with the exception that the empty interval is not used: the
decoration emp or ill is used instead.

At Level 2, different thresholds generate different compressed interval types. That is, if T
is a parent type for compressed arithmetic, there shall be separate compressed interval types Tτ

for each threshold value τ ≥ trv. The only way to use compressed arithmetic with a particular
threshold τ is to construct Tτ -intervals, that is, objects of type Tτ .
[Note. Since, for any practical interval type T, a decoration fits into less space than an interval, one can
implement arithmetic on “compressed interval” objects that take up the same space as a bare interval
of that type. For instance if T is the IEEE754 binary64 inf-sup type, a compressed interval uses 16
bytes, the same as a bare T-interval; a full decorated T-interval needs at least 17 bytes.

Because compressed intervals must behave exactly like bare intervals as long as one does not
fall below the threshold, and take up the same space, there is no room to encode τ as part of the
interval’s value. “Mixed threshold” operations, combining compressed intervals of the same parent
type and different threshold values, can be done in effect by first converting the input operands to the
destination type, as described below. It is the user’s responsibility to ensure that this is valid in the
context of the application. ]

The enquiry function isInterval(x) returns true if the compressed interval x is an interval,
false if it is a decoration.

The constructor τ-compressedInterval() is provided for each threshold value τ . The result
of τ-compressedInterval(X), where X = (x, dx) is a decorated interval of the parent type, is a
Tτ -interval as follows:

if dx ≥ τ , return the Tτ -interval with value x

else return the Tτ -interval with value dx.

τ-compressedInterval(x) for a bare interval x is equivalent to τ-compressedInterval(newDec(x)).
The function normalInterval(x) converts a Tτ -interval to a decorated interval of the parent

type, as follows:

if x is an interval , return (x, τ).

if x is a decoration d

if d is ill or emp, return (Empty, d)

else return (Entire, d).

Conversion of a Tσ-interval to Tτ -interval shall be equivalent to first converting to a normal dec-
orated interval by normalInterval(), and then to the destination type by τ-compressedInterval(X).
Such conversions need not be provided as single operations.

36 December 13, 2012



DR
AF
T
6.1

Ch2 Draft 6.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §8.8

Arithmetic operations on compressed intervals derive from normal decorated interval opera-
tions. The behavior depends on the threshold, which the user, or potentially the implementation,
can choose to fit the use made of the result. The results are determined by worst case semantics
rules that treat a bare decoration as representing a set of decorated intervals. These follow neces-
sarily if the fundamental theorem is to remain valid. Each operation returns an actual or implied
decoration compatible with its input, so that in an extended evaluation, the final decoration using
compressed arithmetic is never stronger than that produced by full decorated interval arithmetic.

(a) Operations purely on bare intervals are performed as if each x is the decorated interval xτ ,
resulting in a decorated interval ydy that is then converted back into a compressed interval. If
dy < τ , the result is the bare decoration dy, otherwise the bare interval y.

(b) For arithmetic operations with at least one bare decoration input, the result is always a
bare decoration. A bare decoration d in {emp, ill} is treated as ∅d. A bare decoration d

in {trv, def, dac, com} is treated (conceptually, not algorithmically) as an arbitrary xd with
nonempty interval x that is compatible with d: for d in {trv, def, dac}, x is unrestricted,
while for d = com, x is bounded. A bare interval is treated as in item (a). Performing the
resulting decorated interval operation on all such possible inputs leads to a set of all possible
results ydy. The tightest decoration (in the containment order (15)) enclosing all resulting dy

is returned.

Since there are only a few decorations, one can prepare complete operation tables according to
these rules, and only these tables need to be implemented. Sample tables for a number of operations
are given in §16 in Annex B, together with some worked examples of compressed arithmetic.

If compressed arithmetic is implemented, it shall provide versions of all the required operations
of §8.6, and it should provide the recommended operations of §8.7.
�! It needs to be decided how numeric functions such as midpoint work on a compressed interval

when it is a decoration. Also comparisons.
[Note. ?? An alternative view on compressed intervals is to regard them as a flavor. When the threshold
τ is com, they conform to the requirements of a flavor: they extend classical interval arithmetic, and
one can tell when an arithmetic expression evaluation has failed to be common, because the result is a
decoration instead of an interval. However, if τ < com this is no longer so.]

37 December 13, 2012


