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6. Level 2 description

Objects and operations at Level 2 are said to have finite precision. They are the entities
from which implementable interval algorithms may be constructed. Level 2 objects are called
datum{ﬁince the standard deals with numeric functions of intervals (such as the midpoint) and
interval functions of numbers (such as the construction of an interval from its lower and upper
bounds), this clause involves both numeric and interval datums, as well as the unique set D of
decorations.

Following the 754 standard, numeric (floating point) datums are organized into formats.
Interval datums are organized into types. Each format or type is a finite set of datums, with
associated operations. The standard defines three kinds of interval type:

— Bare interval types, see representing finite sets of (mathematical, Level 1) intervals.
— Decorated interval types, see §77, representing finite sets of decorated intervals.
— Compressed interval types, see §77, which implement compressed interval arithmetic.

An implementation shall support at least one bare interval type. There shall be a one-to-
one correspondence between bare interval types and decorated interval types, wherein each bare
interval type has a corresponding derived decorated interval type. Beyond this, which types are
supported is implementation-defined or language-defined.

This standard uses the term operation of a type T, where T is a bare or decorated interval
type, to mean any of the following:

(a) A T-interval extension (§6.5)) of one of the required or recommended operations of whose
inputs and output are T-intervals.
(b) A function such as the midpoint, whose input is a T-interval and output is a numeric value.

)
(¢) A constructor, whose input is numeric or text and output is a T-interval.
(d) The T-interval hull, regarded as a conversion operation, see §6.4.2)

Such an operation is also called a T-version of the corresponding mathematical point operation
(e.g., T-version of +), or generic operation of that name (e.g., T-version of the midpoint function).

In a specific language or programming environment, the names used for types may differ from
those used in this document.

6.1. Datums are tagged by names. A format or type is an abstraction of a particular way
to represent numbers or intervals—e.g., “IEEE 64 bit binary” for numbers—focusing on the Level
1 objects represented, and hiding the Level 3 method by which it is done.

However a datum is more than just the Level 1 value: for instance the number 3.75 represented
in 64 bit binary is a different datum from the same number represented in 64 bit decimal.

This is achieved by formally regarding each datum as a pair:

number datum = (Level 1 number, format name),
interval datum = (Level 1 interval, type name),

where the name is some symbol that uniquely identifies the format or type. The Level 1 value is
said to be tagged by the name. This achieves two needed properties: distinct formats or types
are disjoint sets; and two datums are equal if and only if they represent the same Level 1 value
tagged by the same name.
Names are omitted except when clarity requires.

[Example. Level 2 interval addition within a type named t is normally written z = x + y, though the
full correct form is (z,t) = (z,t) + (y,t). The full form might be used, for instance, to indicate that
mixed-type addition is forbidden between types s and t but allowed between types s and u. Namely,
one can say that (x, s) + (y,t) is undefined, but (x,s) + (y,u) is defined.]

6.2. Number formats. Having regard to §6.1} a number format, or just format, is the set
of all pairs (z, f) where x belongs to a finite subset F of the extended reals R* that contains —co
and 4oo, and f is a name for F. Normally the format is identified with the set F. A floating-point
format in the 754 sense, such as binary64, is identified with the number format where F comprises
the set of extended-real numbers that are exactly representable in that format, where -0 and +0
both represent the mathematical number 0.

9Not “data”, whose common meaning could cause confusion.
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6.3. Bare interval types.

6.3.1. Definition. A bare interval type is an arbitrary finite set T of pairs (x,t) such that
(Empty, t) and (Entire, t) are members of T, where ¢ is a unique name for T.

With this simplification, a bare interval type is an arbitrary finite set T of intervals that
includes Empty and Entire.

An interval in T may be called a T-interval; a box with T-interval components may be called
a T-box.
[Examples. To illustrate the flexibility allowed in defining types, let S; and Ss be the sets of inf-
sup intervals using 754 single (binary32) and double (binary64) precision respectively. That is, a
member of Sy [respectively So] is either empty, or an interval whose bounds are exactly representable
in binary32 [respectively binary64].

An implementation can (and usually would) define these as different types, by tagging members of
S1 by one type name ty; and members of Sa by another name to. At Level 3 they would be represented
as a pair of binary32 or binary64 floating point datums respectively. However, it could treat them
as one type, with the representation by a pair of binary32's being a space-saving alternative to the
pair of binary64's, to be used when convenient. |

6.3.2. Inf-sup and mid-rad types. The inf-sup type derived from a given number format F
(called the inf-sup F type for short) is the bare interval type T comprising all intervals whose
endpoints are in F, together with Empty. Note that Entire is in T because oo € F by the
definition of a number format, so T satisfies the requirements for a bare interval type given in
46.3.1]

A 754-conforming implementation shall support the inf-sup type derived from the basic 754
format binary64, and may support the inf-sup types of any of the other basic formats binary32,
binary128, decimal64, and decimall28.

Mid-rad types are not specified by this standard but are useful for examples. A mid-rad
bare interval type is taken to be one whose nonempty bounded intervals comprise all intervals of
the form [m — r,m + r], where m is in some number format F, and r is in a possibly different
number format F’, with m,r finite and r > 0. From the definition in the type must also
contain Empty and Entire; it may also contain semi-infinite intervals.

6.3.3. Multi-precision interval types. Multi-precision floating point systems generally provide
an (at least conceptually) infinite sequence of levels of precision, where there is a finite set F,, of
numbers representable at the nth level (n = 1,2,3,...), and F; C Fy C F3.... These are used to
define a corresponding infinite sequence of interval types T,,.

For those multi-precision systems that define a nonempty T,,-interval to be one whose endpoints
are F,,-numbers, each T,, is an inf-sup type with a unique interval hull operation—explicit, in the
sense of

It is necessary that these define an infinite sequence of interval types. It is not possible to take
the (infinite) set, of all T,-intervals for arbitrary n, as a single type, because it has no interval hull
operation: there is generally no tightest member of it enclosing a given set of real numbers. This
constrains the design of multi-precision interval systems that conform to this standard.

6.4. Explicit and implicit types, and Level 2 hull operation.
6.4.1. Hull in one dimension. Each bare interval type T shall have an interval hull operation
specified:
y = hull(s),
which is part of its definition and maps an arbitrary set of reals, s, to a minimal T-interval y
enclosing s. Minimal is in the sense that

s C y, and for any other T-interval z, if s C z C y then z = y.

For clarity when needed, this operation may be called the T-hull and denoted hully.

Since T is a finite set and contains Entire, such a minimal y exists for any s. In general y may
not be unique. If it is unique for every subset s of R, then the type T is called explicit, otherwise
it is implicit. For an explicit type, the hull operation is uniquely determined and need not be
separately specified. For an implicit type, the implementation’s documentation shall specify the
hull operation, e.g., by an algorithm.

Two types with different hull operations are different, even if they have the same set of intervals.
[Examples. It is easy to see that every inf-sup type is explicit. A mid-rad type is typically implicit.
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As an example of the need for a specified hull algorithm, let T be the mid-rad type ( where
F and ¥ are the IEEE binary64 format, and let s be the interval [—1,1 4 €| where 1 + € is the next
binary64 number above 1. Clearly any minimal interval (m,r) enclosing s hasr = 1+ €. But m can
be any of the many binary64 numbers in the range 0 to €; each of these gives a minimal enclosure of s.

A possible general algorithm, for a bounded set s and a mid-rad type, is to choose m € F as close
as possible to the mathematical midpoint of the interval [s,s] = [inf s, sup s] (with some way to resolve
ties) and then the smallest r € F' such that r > max(m — s,5 — m). The cost of performing this
depends on how the set s is represented. If s is a binary64 inf-sup interval, it is simple. For more exotic
s it could be expensive. |

For 754-conforming implementations the hull operations of the inf-sup types derived from the
formats binary32, binary64, binary128, decimal64 and decimall28 are denoted respectively as

hullysp, hullpgs, hullpigs, hullges, hullgsos.

6.4.2. Interval conversion. An implementation shall provide, for each supported bare interval
type T, an operation that returns hullp(z) (as an interval of type T) for any interval & of any
supported bare interval type.

6.4.3. Hull in several dimensions. Inn dimensions the T-hull is defined componentwise, namely
the hull of an arbitrary subset s of R" is y = (y4,...,y,,) where

y, = hullp(s;),
and s; = {s; | s € s} is the projection of s on the ith coordinate dimension. It is easily seen that

this is a minimal T-box containing s, and that if T is explicit it equals the unique tightest T-box
containing s.

6.5. Level 2 interval extensions. Given a bare interval type T, a T-interval extension
of an n-variable scalar point function f is a mapping f from n-dimensional T-boxes to T-intervals,
that is f : T" — T, such that f(x) € f(x) whenever x € x and f(x) is defined. Equivalently

f(x) 2 Range(f | z). (20)
for any T-box x € T", regarding « as a subset of R".

Generically, such mappings are called Level 2 (interval) extensions. Though only defined
over a finite set of boxes, a Level 2 extension of f is essentially equivalent to a full Level 1 extension
of f, see namely f* where

f7(s) == f(hull(s))
for any subset s of R™. Then f*(s) = f(s) for s € T™, so this document does not distinguish
between the Level 2 and Level 1 extensions..

6.6. Operations on bare intervals.

6.6.1. Accuracy modes for inf-sup types. The standard defines accuracy modes that indicate
how near an operation is to being as tight as possible.

[Note. These modes are specified for inf-sup types only. “Tightest” and “valid” clearly apply to any
interval type, but there seems no simple way to define an analogue of “accurate” for general types.]

For a given number format F and an extended-real number x, nextUp(z) is defined to be 400
if x = 400, and the least member of F greater than = otherwise; nextDown(z) is defined to be —co
if x = —o0, and the greatest member of F less than x otherwise.

Given an interval & = [z,7] of the inf-sup type T derived from F, widen(x) is the T-interval
defined by

widen(x) = [nextDown(z), nextUp(Z).
[Note. That is, widen moves each finite endpoint of © outward to the next F-number. For 754 formats
and others based on a radix-significand-exponent form, this is often called a change of one ulp (unit in
the last place).]

For a T-box & = (x1,...,x,), this function acts componentwise to produce the T-box

widen(x) = (widen(xy),...,widen(x,)).
For a T-interval extension f of an n-variable scalar point function f, the standard specifies
three accuracy modes for f:
Tightest: f(x) shall equal the T-hull of (Range(f|x)), for any T-box @. That is, equality
is to hold in .
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Forward Reverse
Name Accuracy Name Accuracy
add(z,y) tightest sqrRev(z) accurate
sub(x,y) tightest invRev(z) accurate
mul(z,y) tightest absRev(x) accurate
div(z,y) tightest pownRev(z,p) accurate
inv(x) tightest sinRev(z) accurate
sqrt(x) tightest cosRev(z) accurate
hypot(z,y) tightest tanRev(z) accurate
case(b, g, h) tightest coshRev(z) accurate
sqr(z) tightest
pown(z,p) accurate
pow(z,y) accurate

exp,exp2,expl0(z) tightest
log,log2,logl0(x) tightest

sin(z) accurate
cos(z) accurate
tan(z) accurate
asin(x) accurate
acos(x) accurate
atan(x) accurate
atan2(y, x) accurate
sinh(x) accurate
cosh(z) accurate
tanh(z) accurate
asinh(x) accurate
acosh(x) accurate
atanh(x) accurate
sign(x) tightest
ceil(x) tightest
floor(z) tightest
round(x) tightest
trunc(z) tightest
abs(x) tightest
min(z1,...,2k) tightest
max(T1i,...,Tk) tightest

TABLE 8. Accuracy levels for required arithmetic operations.

Accurate: f(x) shall be contained in the T-hull of Range(f |widen(x)), for any T-box x.
That is, the result lies between the outward-rounded lower and upper bounds of the exact
range of a slightly expanded input box.

Valid: No requirement beyond .

6.6.2. Arithmetic operations. An implementation shall provide a T-interval extension of each
forward and reverse arithmetic operation in for each supported bare interval
type T (and hence for its derived decorated type, see . [Note. For operations with some integer
arguments, such as integer power x™, only the real arguments are replaced by intervals.)

For a 754-conforming type, each required operation shall have a version of that type with
accuracy mode as in Table For recommended operations, and for any type that is not 754-
conforming, the accuracy mode is implementation-defined.

An implementation may provide more than one version of some operations for a given type.
For instance it may provide an “accurate” version of some operation in addition to a required
“tightest” one, to offer a trade-off between accuracy and speed.
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6.6.3. Non-arithmetic operations. An implementation shall provide T-interval versions of each
operation in for each supported bare interval type T (and hence for its derived decorated
type, see .

These operations shall return the T-interval hull of the exact result. In particular, for any
inf-sup type, both intersection and convexHull shall return the exact result.

6.6.4. Constructors and conversions.

/N\ This is provisional and is matched to the corresponding Level 1 operations. I

An implementation shall provide the following constructor operations. typeOf indicates that
the name of the operation specifies the destination interval type, which may be unrelated the
operands’ number formats. E.g., typeOf-num2interval might stand for any of binary32num2interval,
decimal64num2interval, etc. There shall be a version of such operations for each supported in-
terval type.

typeOf -nums2interval(l, u). If the numbers represented by the floating point datums [, u satisfy
the conditions in for defining a nonempty interval @ = [I,ul—i.e., 00 <1 < u < 400,
l < 400, u > —oo—the constructor is said to succeed, and returns the tightest interval of the
destination type containing x. Otherwise it is said to fail, and returns Empty.
The types of [ and u may be any supported number formats and need not be the same.

typeOf -num2interval(z) has the same effect as typeOf-nums2interval(z,z). In particular it
succeeds if and only if the floating point datum =z is a finite number.

typeOf-Entire() succeeds, and has the same effect as typeOf-nums2interval(—oo, +00).
typeOf -Empty() succeeds, and returns the empty interval of the destination type.

typeOf-text2interval(s) If the text string s defines a mathematical interval @, this constructor
succeeds, and returns the tightest interval of the destination type containing x. Otherwise it
fails, and returns the empty interval.
/N\ A motion is needed to decide the details. Vienna§6 has a specification we may like to follow. I
Meantime | assume, in examples, that things like text2interval(”[1.2,3.4]”) and text2interval(”Empty”)
have the natural effect.

6.6.5. Reverse-mode elementary functions.
A The list from a revised Motion 11 will go here.
6.6.6. Comparison operations.
/N\ No motion about these yet.
6.6.7. Other operations.
/N | expect intersection, hull, midpoint, etc., will go here.
It needs to be decided how such non-arithmetic operations handle decorations.
Also how decorations affect comparison functions:
/N We need to specify how the interval part of a 111 interval behaves w.r.t. real-valued functions I
like radius (always NaN?) and “forget decoration” (gives Empty?).
6.6.8. Reduction operations. Implementations shall provide an exact dot product operation.
/N Details TBW
6.6.9. Recommended operations (informative).
6.6.10. Accuracy of recommended elementary functions.
/N This will give Vincent Lefevre's list of accuracy info for the functions listed in Level 1.
6.6.11. Reverse-mode elementary functions.
/N The list from a revised Motion 11 will go here.
6.6.12. Other operations.
A The list from a revised Motion 11 will go here.

6.7. Decorated interval types. Given a bare interval type T, the derived decorated interval
type DT consists of all decorated intervals whose bare interval part is a T-interval, tagged with the
name of T. That is, a member of DT can be regarded as a triple («,d,t) where (,t) is in T and
d is a valid decoration for  according to (?7).

6.8. Representations. [Note. Some of these definitions appeared in previous versions of this
paper or in the draft standard, others didn’t.]
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e A representation of an interval type comprises a set IF called an i-format, and whose members
are called (level 3) interval objects, together with a map r from a subset of IF (the “valid”
objects) to T. If object X maps to datum @, we say X represents . (DS§3.1 Table 1 note
b: “Not every interval object necessarily represents an interval datum, but when it does, that
datum is unique. Each interval datum has at least one representation, and may have more than
one.”)

[Note. A representation is not an approximation—it means just what it says. E.g., an interval object
in mid-rad form with midpoint m = 1 and radius r = 1e-300 means precisely the mathematical
interval [1 —1073%0, 1 4 107309] ]

o A text representation of an interval type is a representation whose i-format is a set IT of text
strings. [Note. This is related to the Motion 17 notion of a ti-format. The latter assumes an inf-sup
representation, while the present definition does not.]

e A representation is standardized if there is also provided a map s from the whole of T into IF,
such that s(x) is a representation of :

r(s(x)) =« for each x in T.

The object s(x) is called the “standard representation” of the datum .

[Example. In an inf-sup representation, r might map both the objects (-0,3) and (+0,3) to the
interval datum [0,3]. Suppose the standardized representation always uses +0; then s would map
[0,3] to (+0,3) ]

[Note. A standardized text representation of T essentially defines a way to write any T-interval out
in text form and read it back exactly. Think of map s as “write” and r as ‘read”. See §6.9.2]

6.9. Rationale for defined hulls, text representation, and reproducibility.

6.9.1. The hull.

6.9.2. Standardised text representation. In Motion 17, persuaded by Michel Hack, I included
the requirement that—for a 754-conforming inf-sup type T only—there should be a way to dump
any T-interval x to text using 754’s “hexadecimal significand” form; but we forgot to require it
should be readable back again.

The current motion goes beyond inf-sup to allow any level 3 representation whatever of in-
tervals, which, I believe, makes it especially important that there should be an exact textual
representation y of any interval datum @, documented so that the user can, if desired, manually
construct the mathematical interval represented. The two-way mapping (functions r and s) makes
it possible to confirm that what one sees as text is what is actually being computed with.

The requirement that y depend only on the level 2 datum «, not on the possibly non-unique
internal representation of @, is deliberate. It simplifies matters for the user and protects the
implementer.

6.9.3. Reproducibility.

6.9.4. Interval formats.

6.9.5. F-intervals.

6.9.6. Finite precision hull.

6.9.7. Interval format conversion.

6.10. Decoration system. & To be written.
6.10.1. Implementation considerations. (Informative.)
6.10.2. Forgetful operations. Implementations shall provide operations

intervalPart(x)
decorationPart(x)

that return the interval or decoration part of the input, respectively.
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