
submitted May 18, accepted for publication in Numerical Algorithms November 28, 2011

FAST INTERVAL MATRIX MULTIPLICATION

SIEGFRIED M. RUMP ∗

Abstract. Several methods for the multiplication of point and/or interval matrices with interval result are discussed. Some

are based on new priori estimates of the error of floating-point matrix products. The amount of overestimation including all

rounding errors is analyzed. In particular, algorithms for conversion of infimum-supremum to midpoint-radius representation

are discussed and analyzed, one of which is proved to be optimal. All methods are much faster than the classical method

because almost no switch of the rounding mode is necessary, and because our methods are based on highly optimized BLAS3

routines. We discuss several possibilities to trade overestimation against computational effort. Numerical examples focussing

in particular on applications using interval matrix multiplications are presented.

Key words. Interval arithmetic, overestimation, matrix multiplication, infimum-supremum representation, optimal midpoint-

radius representation, interval matrix product, rounding mode, BLAS, unit in the first place (ufp), error analysis

AMS subject classifications. 15-04, 65G99, 65-04

1. Introduction. Interval arithmetic is a convenient though not mandatory way to obtain rigorous

results on digital computers. Serious applications such as rigorous error bounds for the solution of partial

differential equations [25, 24, 32, 33] or computer-assisted proofs [5] are based on an efficient implementation

of interval arithmetic, where in particular interval matrix multiplication is a major time consuming part.

Therefore we are interested in fast algorithms to that purpose as well as their analysis. Here “fast” refers

to the practical execution time on today’s computers, where obstacles like cache misses, branches, switching

the rounding mode and compiler optimization require special attention.

Let F denote a set of binary floating-point numbers according to the IEEE 754 floating-point standard

[12, 13]. Throughout the paper we assume that no overflow occurs, but allow underflow. Interval quantities

with floating-point endpoints, i.e. the sets of scalar intervals, interval vectors and matrices are defined by

A ∈ IFm×n :⇔ A ∈ { [A1, A2] : A1, A2 ∈ Fm×n and A1 ≤ A2 } ,(1.1)

where here and in the following interval matrices are written in bold letters, and comparison is to be

understood componentwise. Such an interval quantity represents the set of all real matrices within the

bounds, i.e.

[A1, A2] = { A ∈ Rm×n : A1 ≤ A ≤ A2 } .

Of course, the endpoints A1, A2 may be real matrices as well with similar definitions. Besides the infimum-

supremum representation (1.1), we also use the midpoint-radius representation

⟨mA, rA⟩ := { A ∈ Rm×n : mA− rA ≤ A ≤ mA+ rA} .(1.2)

Any A ∈ Fm×n can be identified with its “point interval” A := [A,A] = ⟨A, 0⟩. The power set operations

◦ ∈ {+,−, ·} (in this paper we do not need division) between compatible interval quantities A,B are defined

by

PR(A ◦B) := {A ◦B : A ∈ A, B ∈ B} .(1.3)

∗Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,

Japan (rump@tu-harburg.de).

1

2 S. M. RUMP

Interval operations between compatible interval quantities A,B are defined by

A ◦B :=
∩

{M : PR(A ◦B) ⊆ M}(1.4)

with M denoting an interval quantity of appropriate dimension. The inclusion principle dictates that the

interval result shall always be a superset of the power set result, and A ◦ B is the best possible inclusion

with floating-point endpoints. The result of a scalar interval operation c = [c1, c2] = a ◦ b can be computed

directly using the bounds and floating-point arithmetic with directed rounding:

c1 := min
(
fl∇(a1 ◦ b1) , fl∇(a1 ◦ b2) , fl∇(a2 ◦ b1) , fl∇(a2 ◦ b2)

)
∈ F ,

c2 := max
(
fl△(a1 ◦ b1) , fl△(a1 ◦ b2) , fl△(a2 ◦ b1) , fl△(a2 ◦ b2)

)
∈ F .

This is no longer true for interval matrix multiplication. The classical way [28, Chapter 1] to compute an

interval inclusion C ∈ IFm×n of PR(AB) for A ∈ IFm×k, B ∈ IFk×m is a 3-fold loop defining

Cij := Ai1 ·B1j + . . .+Aik ·Bkj ,(1.5)

where additions and multiplications are (scalar) interval operations. Classically, (1.5) is also used if one or

both operands are point intervals. This is the basis for many libraries such as ACRITH [1], ARITHMOS

[2], Intlib [16] or C-XSC [17]. We abbreviate it by classical(A · B) := C. Obviously PR(AB) ⊆ A · B ⊆
classical(A ·B), and in general PR(AB) & A ·B & classical(A ·B).

The classical approach (1.5) is very slow on today’s computers because i) it requires 2n3 times switching

the rounding mode, thus ii) jeopardizing compiler optimization and iii) putting the burden of well-known

acceleration techniques such as blocked code, parallel implementations etc. on the user.

A considerable improvement was achieved by Knüppel [18, 19] for point matrix times interval matrix, re-

quiring only 2n2 switches of the rounding mode. In [36] midpoint-radius representation is used reducing

the switches of rounding mode to 2, independent of the dimension. This is also true for the product of two

interval matrices. This method, which is used in INTLAB [37], is particularly fast because it allows to use

BLAS3 [3, 8] routines, sequential or parallel. BLAS3 routines such as xGEMM for matrix multiplication

may use blocking, multi-tasking and other ways to improve performance. A drawback of the midpoint-point

radius approach is an inherent overestimation.

A timing comparison1 for different dimensions of the classical approach (1.5), Knüppel’s Profil [18, 19] and the

midpoint-radius approach [36] is shown in Table 1.1. The gcc compiler version 4.4.1 on an Intel(R) Core(TM)2

Duo CPU with 3 Ghz was used, and the BLAS library by Kazushige Goto [8], a fast implementation which

made it to the New York Times [21].

Table 1.1

Computing time for real times interval and interval times interval matrix multiplication (random data) in C using the

classical approach (1.5), Knüppel’s Profil [18, 19] and the midpoint-radius representation [36], one floating-point matrix mul-

tiplication using Goto-BLAS normed to 1.

real × interval matrix interval × interval matrix

dimension classical Profil mid-rad classical Profil mid-rad

100 416 15 4.2 823 148 5.6

200 517 17 3.8 1025 184 5.5

500 646 21 3.7 1191 203 5.1

1000 716 30 3.4 1237 206 4.7

2000 774 36 3.3 1322 218 4.4

1Many thanks to Viktor Härter for performing the tests.

FAST INTERVAL MATRIX MULTIPLICATION 3

Historically the first paper using interval arithmetic to develop algorithms with result verification was

Sunaga’s master thesis [43]. It is hand-written in Japanese and received no attention. It covers many

of the results in Moore’s thesis [22], who undoubtedly popularized interval arithmetic. Midpoint-radius

representation was used by Sunaga and subsequently also by other authors [6]. Most researchers including

Moore, however, prefer infimum-supremum representation. The reason is the mentioned inherent overes-

timation due to a misplaced midpoint. In [36] it is shown that the overestimation for the product of two

interval matrices is usually small, and it is universally limited by a factor 1.5. The latter, however, is only

possible for very wide input data. This analysis neglects rounding errors. The overestimation can be avoided

at the price of extra operations (cf. [28, Proposition 1.6.5], see also Subsection 4.3, in particular (4.19)ff.).

The substantial improvement shown in Table 1.1 is the motivation to analyze the overestimation (including

rounding errors) of the classical and of the midpoint-radius approach compared to the best possible inclusion

A·B, to summarize existing and to present new and even faster algorithms for interval matrix multiplication.

For the conversion of infimum-supremum to midpoint-radius representation three algorithms are presented

and analyzed, and one of them is shown to be optimal.

The worst case factor 1.5 of overestimation seems discouraging, and this may be true when looking at

the single matrix product. When using interval matrix multiplication in a practical application such as

computing bounds for the solution of a linear system, things change. The second motivation is to show the

influence of the overestimation in practical applications.

2. Notation and error estimates. The relative rounding error unit, the distance from 1.0 to the

next smaller2 floating-point number, is denoted by eps, and the underflow unit by eta, that is the smallest

positive (subnormal) floating-point number. For IEEE 754 double precision (binary64) we have eps = 2−53

and eta = 2−1074. Denote by realmin := 1
2eps

−1eta the smallest positive normalized floating-point number,

and by realmax := max{f ∈ F} the largest representable floating-point number. Note that F ⊆ etaZ and

−realmax ≤ f ≤ realmax for all finite f ∈ F. Furthermore, the underflow range is defined by

U := {x ∈ R : |x| < realmin} .(2.1)

The distance of a floating-point number f ∈ 2U to its neighbors is eta. For a very readable and thorough

introduction to floating-point arithmetic cf. [23].

We denote by fl2 : R → F a rounding to nearest, that is

x ∈ R : |fl2(x)− x| = min{|f − x| : f ∈ F} .(2.2)

Any rounding of the tie can be used without jeopardizing the following estimates, only (2.2) and fl2(−x) =
−fl2(x) must hold true. Moreover, we need rounding downwards fl∇ : R → F and rounding upwards

fl∆ : R → F defined by

x ∈ R : fl∇(x) := max{f ∈ F : f ≤ x} and fl△(x) := min{f ∈ F : f ≥ x} .(2.3)

In contrast to the rounding of a real number into a floating-point number by flrnd : R → F for rnd ∈
{2,∇,∆}, we denote by rnd(·) the result obtained when every operation in the expression within the

parenthesis is executed in the specified rounding mode. If the order of execution is ambiguous such as in

C := 2(A ·B) for A ∈ Fm×k and B ∈ Fk×n, then an assertion on C is true for any order of execution. The

approximation 2(A ·B) is to distinguish from the best approximation fl2(AB). Note that IEEE 754 defines

for a, b ∈ F, ◦ ∈ {+,−, ·} and x := a ◦ b ∈ R scalar operations by rnd(a ◦ b) = flrnd(x) ∈ F.

Thus ∇(A ·B) and △(A ·B) denote the result in rounding downwards and upwards, respectively, so that

∇(A ·B) ≤ AB ≤ △(A ·B) .(2.4)

2Sometimes the distance from 1.0 to the next larger floating-point number is used; for example, Matlab adopts this rule.

4 S. M. RUMP

f � := ufp(f) 2 eps �
Fig. 2.1. Normalized floating-point number: unit in the first place and unit in the last place

Once the rounding is changed to a directed rounding, it need not to be changed again by using ∇(A ·B) =

−∆((−A) ·B). This may be useful if changing the rounding mode is very time consuming.

To analyze conversion between infimum-supremum and midpoint-radius representation, we need the im-

proved error estimates for floating-point operations I introduced in [41]. They are based on the “unit in the

first place (ufp)” or leading binary bit of a real number, which is defined by

0 ̸= r ∈ R ⇒ ufp(r) := 2⌊log2 |r|⌋ ,(2.5)

where ufp(0) := 0. This concept is independent of a floating point format or underflow range, and it applies

to real numbers. It gives a convenient way to characterize the bits of a normalized floating-point number f :

they range between the leading bit ufp(f) and the unit in the last place 2epsufp(f). In particular

f ∈ F ⇒ f ∈ 2epsufp(f)Z ,(2.6)

which is also true in underflow, and

0 ̸= x ∈ R : ufp(x) ≤ |x| < 2ufp(x) .(2.7)

The situation is illustrated in Figure 2.1, where the line depicts the bits of the floating-point representation

of f . To the left is the leading bit ufp(f), which is the implicit 1 for normalized numbers. We often use

a± b ∈ 2U ⇒ fl(a± b) = a± b and x /∈ 2U ⇒ flrnd(x)/2 ∈ F for rnd ∈ {2,∇,∆} ,(2.8)

where a, b ∈ F and x ∈ R. The first conclusion is known as Hauser’s observation [10]. When rounding

a ◦ b ∈ R for a, b ∈ F and ◦ ∈ {+,−, ·} into f := rnd(a ◦ b) = flrnd(a ◦ b) ∈ F, the error is characterized [41]

by

f = x+ δ + η with |δ| ≤ φufp(x) ≤ φ ufp(f) ≤ φ|f |, |η| ≤ eta/2, δη = 0 ,(2.9)

where φ = eps for rounding to nearest and φ = 2eps for directed rounding. Using (2.8) we have for

floating-point addition and subtraction

f = fl2(a± b) ⇒ |f − (a± b)| ≤ eps ufp(a± b) ≤ epsufp(f) ,(2.10)

f ∈ {fl∇(a± b),fl∆(a± b)} ⇒ |f − (a± b)| ≤ 2epsufp(a± b) ≤ 2eps ufp(f) .(2.11)

The second estimate (2.11) is particularly useful for Cell processors [15, 14].

Many interesting properties of ufp(·) are given in [41] without which certain delicate estimates of errors in

floating-point computations had hardly been possible. Another example is the following error estimate for

dot products, which was proved in [40]. Note that the bound is computed in floating-point arithmetic.

Theorem 2.1. Let A ∈ Fm×k and B ∈ Fk×n with 2(k + 2)eps ≤ 1 be given, and let C := 2(A · B) and

Γ := 2(|A| · |B|). Here C may be computed in any order, and we assume that Γ is computed in the same

order. Then

| 2(A ·B)−AB | ≤ 2
(
(k + 2) epsufp(Γ) + realmin

)
.(2.12)

The factor k + 2 cannot be replaced by k + 1.

FAST INTERVAL MATRIX MULTIPLICATION 5

Remark 1. Usually the products C and Γ are computed by the same library routine, for example xGEMM

in BLAS3 [3, 8], so that it seems reasonable to assume that for matrices of the same size the operations are

executed in the same order of execution.

Remark 2. The result is true regardless of the order of execution of the two products in the right hand side

of (2.12).

Fortunately there is a simple algorithm to compute the unit in the first place [41], which we repeat for

convenience. It works correctly in the underflow range but causes overflow for input very close to ±realmax.
The latter case can be cured by scaling with a power of 2, however, at the cost of a branch.

Algorithm 2.2. Unit in the first place of a floating-point number.

function S = ufp(p)

q = fl(φp) for φ := (2eps)−1 + 1

S = fl(|q − (1− eps)q|)

Note that this algorithm can be applied to a matrix as well. For an n× n-matrix, the unit in the first place

is computed in 4n2 floating-point operations.

The classical bound [11, (3.5)], barring underflow, for the error of the floating-point matrix product is

|2(A ·B)−AB| ≤ γk|A||B| with γk :=
keps

1− keps
,(2.13)

where here an in the following we implicitly assume keps < 1 when using γk. Estimate (2.12) is superior to

the classical bound (2.13) because the ufp-concept and (2.7) imply that (2.12) is up to a factor 2 better than

(2.13), whereas the latter is neither true when computed in rounding to nearest nor is it valid in the presence

of underflow. On the other hand, (2.13) is independent of the sequence of operations because it depends on

the real matrix product |A||B|. Both estimates do, in general, grossly overestimate the true error, for which

the factor γk can usually be replaced by a small constant independent of k. Nevertheless, both estimates

(2.12) and (2.13) are almost sharp in the worst case.

By (2.9), barring underflow, the classical bound (2.13) for rounding to nearest changes into

|∇(A ·B)−AB| ≤ γ2k|A||B| and |∆(A ·B)−AB| ≤ γ2k|A||B|(2.14)

for directed rounding. For A = [A1, A2] ∈ Rm×n additional notations are

mid([A1, A2]) := (A1 +A2)/2 ∈ Rm×n and rad([A1, A2]) := (A2 −A1)/2 ∈ Rm×n(2.15)

and

A ∈ IRm×n : |A| := max{|A| : A ∈ A}(2.16)

where, as always, comparison between vectors and matrices is to be understood entrywise.

3. Conversion between infimum-supremum and midpoint-radius. Since we assume interval ma-

trices to be given in infimum-supremum representation but, motivated by Table 1.1, want to use midpoint-

radius representation, we need a conversion without sacrificing the inclusion principle. A given midpoint-

radius representation ⟨mA, rA⟩ with mA, rA ∈ Fn×n is easily converted into infimum-supremum represen-

tation by

A1 := ∇(mA− rA) and A2 := ∆(mA+ rA) .(3.1)

Obviously, ⟨mA, rA⟩ ⊆ [A1, A2]. The optimality of operations with directed rounding (2.3) implies that the

inclusion is best possible, but in general not with equality. The overestimation is estimated as follows.

6 S. M. RUMP

Theorem 3.1. Let mA, rA ∈ Fn×n be given and let A1, A2 be as in (3.1). Then

rA ≤ rad([A1, A2]) ≤ rA+ 2epsmax
(
|mA|, |rA|

)
.(3.2)

The factor 2 is sharp up to O(eps).

Proof. The left inequality is clear by ⟨mA, rA⟩ ⊆ [A1, A2]. Since 2eps is the relative rounding error unit

for directed rounding, (2.11) implies

|A2 −A1 − 2rA| = |∆(mA+ rA)− (mA+ rA)−∇(mA− rA) + (mA− rA)|
≤ 2eps

(
|mA+ rA|+ |mA− rA|

)
,

and the second inequality follows. The predecessor and successor of 1+ 2eps is 1 and 1+4eps, respectively,

so that ⟨1 + 2eps, eta⟩ is transformed into [1, 1 + 4eps] with radius 2eps. The assertion follows. �

If an entry of rAij is not too small relative to mAij , then the corresponding overestimation is small.

The midpoint-radius form allows, in contrast to the infimum-supremum form, to represent very narrow

intervals. One might come to the conclusion that therefore the midpoint-radius form is preferable and

should produce narrower inclusions in general. However, this is not true. In [38, Lemma 3.2] it is shown

that under general assumptions the expected distance of x ∈ R to 2(x) is of the order βepsufp(x) with a

factor β close to 1. This means that in general a relatively small radius disappears after the first interval

operation, and there is no general benefit of the midpoint-radius representation in that respect.

In the conversion from infimum-supremum to midpoint-radius representation, the first problem is the choice

of the midpoint. This is not as obvious as it may seem [9]. In particular, the midpoint should be inside the

interval. For example, in a 2-digit decimal arithmetic, the obvious choice of the midpoint of A := [0.62, 0.64]

computes to ∆
(
(0.62 + 0.64)/2

)
= 0.65 and does not belong to A.

For a given infimum-supremum representation [A1, A2] with A1, A2 ∈ Fn×n we consider two ways of conver-

sion into midpoint-radius representation, namely

mA′ := ∆(A1 + (A2 −A1)/2) and rA′ := ∆(mA′ −A1)(3.3)

and

mA := ∆((A1 +A2)/2) and rA := ∆(mA−A1) .(3.4)

From a performance point of view, the latter, which was proposed by Oishi [30], needs only 2n2 operations,

whereas the computation of mA′ requires 3n2 operations. But from a numerical point of view, the former

is, in general, preferable to (A1 +A2)/2, cf. [4, 7].
3

For the conversion from infimum-supremum to midpoint-radius representation in binary, however, the op-

posite is true. We will prove that (3.3) and (3.4) deliver in many cases the same midpoint and radius, but

always rA ≤ rA′, and sometimes rA < rA′. For better readability we use a scalar interval [a, b] ∈ IF with

µ := (a+ b)/2 and ϱ := (b− a)/2, µ, ϱ ∈ R, so that [a, b] = ⟨µ, ϱ⟩. The following results hold for an interval

matrix [A1, A2] entrywise.

Lemma 3.2. Let a, b ∈ F, a ≤ b be given and define m′, r′,m, r ∈ F by

m′ := ∆(a+ (b− a)/2) and r′ := ∆(m′ − a)(3.5)

and

m := ∆((a+ b)/2) and r := ∆(m− a) .(3.6)

3In decimal arithmetic (3.4) is not even acceptable because the computed midpoint mA may not be in [A1, A2].

FAST INTERVAL MATRIX MULTIPLICATION 7

Then

[a, b] ⊆ ⟨m′, r′⟩ and [a, b] ⊆ ⟨m, r⟩ .(3.7)

Furthermore,

m = fl∆
(a+ b

2

)
.(3.8)

Remark. Note that (3.8) is not true for m′. In fact, m′ may differ significantly from m:

[−1 + eps, 1] is transformed into ⟨m, r⟩ = ⟨eps/2, 1⟩ , but ⟨m′, r′⟩ = ⟨eps, 1⟩ ,(3.9)

so that m = (a+ b)/2 but m′ = 2m.

Proof. The rounding mode implies m ≥ µ and m′ ≥ µ. For any µ ≤ m̂ ∈ F and r̂ := ∆(m̂− a) it follows

r̂ ≥ m̂− a ≥ µ− a = b− µ and

m̂− r̂ ≤ a ≤ b = µ+ b− µ ≤ m̂+ r̂ ,

which means [a, b] ⊆ ⟨m̂, r̂⟩ and therefore (3.7). If a+ b ∈ 2U, then (2.8) implies a+ b ∈ F and (3.8) follows.

If a+ b /∈ 2U, then (2.8) implies m = ∆(s/2) = s/2 for s := ∆(a+ b), so that (3.8) follows again. �

The rounding upwards in (3.5) and (3.6) cause a certain unsymmetry; therefore we need Sterbenz’ lemma

for a, b ≥ 0 and for a, b ≤ 0.

Lemma 3.3. If

0 ≤ a

2
≤ b ≤ 2a or 2b ≤ a ≤ b

2
≤ 0 ,(3.10)

then b− a ∈ F.

Proof. If b − a ∈ U, then (2.8) implies b − a ∈ F. Otherwise, this is Sterbenz’ lemma [42] for the first

assumption in (3.10), and again Sterbenz’ lemma implies |a| − |b| = b− a ∈ F for the second assumption. �

Lemma 3.4. Let a, b ∈ F, a ≤ b be given and define m′, r′,m, r ∈ F by (3.5) and (3.6). Then (3.10) implies

m′ = m and r′ = r.

Proof. Assume b − a ∈ 2U. Then b − a ∈ F by (2.8) and m = ∆(µ) by (3.8). By F ⊆ etaZ, a + b and

a− b are either both even or both odd multiples of eta. In the first case (b− a)/2 ∈ F and m′ = ∆(µ) = m.

Otherwise, ∆
(
(b− a)/2

)
= (b− a)/2 + eta/2, and

m′ = ∆
(
a+ (b− a)/2

)
= fl∆(µ+ eta/2) = fl∆(µ) = m .

If a+ b ∈ 2U, then the definition (2.1) of U and ab ≥ 0 imply a, b, b− a ∈ 2U, and we may proceed as before.

Now suppose a+ b, b−a /∈ 2U. Hence Lemma 3.3 implies b−a ∈ F, and b−a /∈ 2U together with (2.8) yields

∆
(
(b− a)/2

)
= (b− a)/2. It follows m′ = ∆(a+ (b− a)/2) = fl∆((a+ b)/2) = m, and therefore r′ = r. �

As has been mentioned, m := ∆
(
(a + b)/2

)
may be outside the interval [a, b] in decimal arithmetic.4 This

cannot happen in binary arithmetic for both m and m′ computed by (3.5) and (3.6), respectively. Moreover,

the radius r as computed by (3.6) is never larger than r′ in (3.5).

Theorem 3.5. Let a, b ∈ F, a ≤ b be given and define m′, r′,m, r ∈ F by (3.5) and (3.6). Then

m′,m ∈ [a, b] and r′ ≥ r ,(3.11)

but not necessarily ⟨m, r⟩ ⊆ ⟨m′, r′⟩.

4This is also true for 2((a+ b)/2) as for the same example [0.62, 0.64] in 2-digit decimal arithmetic.

8 S. M. RUMP

Proof. By (3.8), m = fl∆(
a+b
2) ∈ [a, b]. By Lemma 3.4, m′ ̸= m can happen only for wide intervals, and a

case distinction proves m′ ∈ [a, b]. Since m = fl∆
(
(a + b)/2

)
= min{f ∈ F : (a + b)/2 ≤ f} and µ ≤ m′, it

follows m ≤ m′ and therefore r′ ≥ r. The last assertion follows by the example in (3.9). �

The question arises whether there is an optimal conversion into midpoint-radius representation, and whether

it is computable in floating-point. Both is true, shown by the following lemma.

Theorem 3.6. Let a, b ∈ F, a ≤ b be given and define

M := 2((a+ b)/2) and R := max
(
∆(M − a),∆(b−M)

)
.(3.12)

Then [a, b] ⊆ ⟨M,R⟩. Abbreviate µ := a+b
2 and ϱ := b−a

2 . The midpoint M and radius R are optimal as by

|M − µ| ≤ |m− µ| and R ≤ r(3.13)

for any m, r ∈ F with [a, b] ⊆ ⟨m, r⟩. Nevertheless, ⟨M,R⟩ ⊆ ⟨m, r⟩ is not necessarily true.

Remark. One might use R′ := ∆(0.5 · (b− a)) to minimize the radius and M ′ := ∆(a+R′) as proposed in

[27]. Indeed one can show R′ = fl∆(ϱ), however, not necessarily [a, b] ⊆ ⟨M ′, R′⟩ as by [a, b] := [1, 1 + 2eps].

In that example R′ = eps = ϱ is the true radius, however, there is no floating-point midpoint m with

[a, b] ⊆ ⟨m,R′⟩.

Proof. The rounding upwards in the computation of R implies R ≥ max(M − a, b−M), so that

M −R ≤M − (M − a) = a ≤ b =M + (b−M) ≤M +R .

If a+b ∈ 2U, then (2.8) implies a+b ∈ F and thereforeM = 2(µ), and if a+b /∈ 2U, thenM = 2(s/2) = s/2

for s := 2(a+ b) again by (2.8). This proves M = 2(µ), and therefore |M − µ| ≤ |m− µ| for any m ∈ F.

Suppose [a, b] ⊆ ⟨m, r⟩, then m− r ≤ a ≤ b ≤ m+ r and (2.2) imply

r ≥ max(m− a, b−m) = max(m− µ, µ−m) + ϱ = |µ−m|+ ϱ ≥ |µ−M |+ ϱ = max(M − a, b−M) .

The definition of R, the optimality (2.2) of the upward rounding and r ∈ F prove r ≥ R. Finally, the interval

[1− eps, 1 + 2eps] is converted into ⟨M,R⟩ = ⟨1, 2eps⟩ and ⟨m, r⟩ = ⟨1 + 2eps, 3eps⟩. �

Although ⟨M,R⟩ is never inferior to ⟨m, r⟩ defined by (3.6), the practical difference is marginal. In 109

random test cases [a, b] with radii ranging from very narrow to very wide, the median of the relative errors

(r − R)/R between r and R was zero, and the mean below eps. Hence one may save the additional

computational effort in (3.12).

All possibilities (3.5), (3.6) and (3.12) have their drawbacks with unexpected overflow. The interval

[−realmax, realmax] is converted into ⟨m′, r′⟩ = ⟨∞,∞⟩ and ⟨m, r⟩ = ⟨0, realmax⟩ ,

whereas

[realmax, realmax] is converted into ⟨m′, r′⟩ = ⟨realmax, 0⟩ and ⟨m, r⟩ = ⟨∞,∞⟩ ,

and ⟨M,R⟩ = ⟨m, r⟩ in both cases. One might want to cure the second problem by defining m̂ := ∆
(
a/2 +

b/2
)
. Then, however, m̂ = 2eta /∈ [a, b] := [eta, eta], and also M := 2

(
a/2 + b/2

)
= 0 /∈ [a, b].

We have already seen in (3.9) that the midpoints m′ and m may differ significantly, while m = ∆(µ) and

M = 2(µ) cannot. The radius r′ may at least be larger by two units in the last place than r as for

[a, b] := [1 + 6eps, 7 + 40eps] with

⟨m′, r′⟩ = ⟨4 + 32eps, 3 + 28eps⟩ but ⟨m, r⟩ = ⟨4 + 24eps, 3 + 20eps⟩ .

FAST INTERVAL MATRIX MULTIPLICATION 9

By Lemma 3.4, however, r′ > r can only happen for intervals with large diameter. Summarizing, possibilities

(3.5), (3.6) and (3.12) have their advantages and disadvantages. Henceforth we use (3.6) (and (3.4) for

matrices) because it requires less operations and always r ≤ r′. Another reason are the nice, forthcoming

estimates (3.16) in Theorem 3.8, which are weaker for ⟨m′, r′⟩.

The conversion from infimum-supremum to midpoint-radius representation causes an inevitable overestima-

tion if the midpoint µ = (a+ b)/2 is not a floating-point number (e.g. if a and b differ only in the last bit).

The amount of overestimation for not too wide intervals is estimated as follows.

Lemma 3.7. Let a, b ∈ F, a ≤ b be given and define m, r ∈ F by (3.6). If

0 ≤ a ≤ b ≤ 3a or 3b ≤ a ≤ b ≤ 0 ,(3.14)

then m− a ∈ F, i.e. the radius r is computed without rounding error. If in addition a+ b /∈ 2U, then

0 ≤ m− µ = r − ϱ ≤ 2epsufp(µ)(3.15)

for µ := a+b
2 and ϱ := b−a

2 .

Remark. The assumption a + b /∈ 2U for (3.15) is necessary as for [a, b] := [0, eta] with m = r = eta but

µ = ϱ = eta/2, so that m− µ = r − ϱ = 1 · ufp(µ).

Proof. If the first assumption in (3.14) is true, then a ≤ µ = a+b
2 ≤ 2a ∈ F, and by (3.8) and by the

directed rounding in (3.6) it follows

1

2
a ≤ a ≤ µ ≤ ∆(µ) = m ≤ 2a ,

where the last inequality uses that α ∈ R and α ≤ f ∈ F implies fl∆(α) ≤ f . Assume the second assumption

in (3.14) is true, so that m ≤ 0. If a+ b ∈ 2U, then also 0 ≥ a, b,m,m− a ∈ 2U and therefore m− a ∈ F. If
a+ b /∈ 2U, then

2m = 2∆
(a+ b

2

)
= ∆(a+ b) ≤ fl∆(a) = a ≤ a+ b

2
= µ ≤ m ≤ m

2
.

Thus by Lemma 3.3, any of the two assumptions in (3.14) implies m−a ∈ F and therefore r = m−a, so that

r−ϱ = m−a−ϱ = m−µ. Finally (2.11) implies ∆(a+ b) ≤ a+ b+2epsufp(a+ b) and m = ∆
(
(a+ b)/2

)
=

∆(a+ b)/2 since a+ b /∈ 2U, and the assertion follows by ufp(a+ b) = 2ufp
(
(a+ b)/2

)
= 2ufp(µ). �

The amount of overestimation for general intervals is estimated as follows. The proof is lengthy and deferred

to the appendix.

Theorem 3.8. Let a, b ∈ F, a ≤ b be given and define m, r ∈ F by (3.6), µ := (a+ b)/2 and ϱ := (b− a)/2.

If eps ≤ 1
4 and no underflow occurs in the computation of m and r, then

0 ≤ m− µ ≤ 2epsufp(µ) and 0 ≤ r − ϱ ≤ 2eps
(
|µ|+ ϱ

)
.(3.16)

Remark. The estimates are not true for m′, r′ as defined in (3.5). Consider [a, b] := [−2+ 2eps, 2+ 4eps],

then µ = 3eps and m′ = 6eps, so that

m′ − µ = 3eps = 1.5eps−1 · epsufp(µ) ,

and for [a, b] := [−1+ 3eps, 3+ 4eps] we have µ = 1+ 3.5eps, ϱ = 2+0.5eps, m′ = 1+8eps, r′ = 2+ 8eps,

and therefore

r′ − ϱ = 7.5eps ≈ 2.5 · eps
(
|µ|+ ϱ

)
.

This means that the first factor 2 in (3.16) must be replaced by a much larger number to bound m′−µ, and
the second factor 2 for r′ − ϱ at least by a number close to 2.5.

10 S. M. RUMP

Corollary 3.9. Let A = [A1, A2] ∈ Fn×n be given and define M,R ∈ Fn×n by

M := ∆((A1 +A2)/2) and R := ∆(M −A1) .

If no underflow occurs in the computation of M and R, then

0 ≤M −mid(A) ≤ 2epsufp(mid(A)) and 0 ≤ R− rad(A) ≤ 2eps |A|(3.17)

for mid(A), rad(A), |A| ∈ Rn×n as defined in (2.15) and (2.16).

4. Matrix multiplication. We are aiming on fast implementations of interval matrix multiplication.

To simplify the exposition, we explain the methods for square matrices; the generalization to rectangular

matrices is straightforward. Let A,B ∈ Fn×n and A,B ∈ IFn×n be given, then three cases are distinguished:

1) A ·B two point matrices to interval result

2) A ·B point matrix times interval matrix

3) A ·B two interval matrices

(4.1)

4.1. Two point matrices to interval result. The first case is directly solved by (2.4). An imple-

mentation in executable INTLAB code is as follows.

Algorithm 4.1. Product of two floating-point matrices to interval result.

function C = FFmul(A,B)

setround(-1) % switch rounding to downwards

Cinf = A*B; % floating-point product rounded downwards

setround(1) % switch rounding to upwards

Csup = A*B; % floating-point product rounded upwards

C = infsup(Cinf,Csup); % compose result of infimum and supremum

The algorithm is correct, also in the presence of underflow, and there is no restriction on the dimension n.

Algorithm 4.1 requires 2 matrix multiplications. There is no performance improvement using the a priori

estimate (2.12) because it requires the matrix product |A||B|. It can be used through estimates of the

maximum absolute value of elements in the rows of A and columns of B, cf. [31]. However, this introduces

an additional dependency on the size of the entries of A and B.

Algorithm 4.1 produces the same result as the classical approach (1.5), but there is an overestimation

compared to the best possible inclusion. The overestimation is proportional to the condition number of the

individual dot products: Let x, y ∈ Fn be given with c := xT y ̸= 0, and assume that no underflow occurs.

Then by (2.9) the radius ϱ of the narrowest inclusion c := [fl∇(c),fl∆(c)] ∈ IF satisfies ϱ ≤ eps|xT y|, and
by (2.13) the radius r of the inclusion C computed by Algorithm 4.1 (and of the classical approach (1.5))

satisfies r ≤ γn|xT ||y|. Hence the overestimation is bounded by

r ≤ n

1− neps
cond(xT y) ϱ ,(4.2)

using the condition number

cond(xT y) =
|xT ||y|
|xT y|

= lim
ε→0

sup
{∣∣ (x+∆x)T (y +∆y)− xT y

2εxT y

∣∣ : |∆x| ≤ ε|x|, |∆y| ≤ ε|y|
}
.

A more accurate inclusion of the precise result AB ∈ Rn×n can be computed using accurate dot product

techniques as described in [20, 41].

FAST INTERVAL MATRIX MULTIPLICATION 11

4.2. Point matrix times interval matrix. It is known [28] that for matrices A ∈ Rn×n,B =

[B1, B2] = ⟨mB, rB⟩ ∈ IRn×n with real endpoints

PR(AB) = {AB : B ∈ B} = ⟨ AmB , |A|rB ⟩ .(4.3)

The conversion of [B1, B2] into midpoint-radius representation is performed by (3.6), so that an inclusion

[C1, C2] of PR(AB) can be computed as follows.

Algorithm 4.2. Point matrix times interval matrix, requires 3 point matrix multiplications.

function [C1,C2] = FImul3(A,B)

mB := △
(
(B1 +B2)/2

)
rB := △

(
mB −B1

)
% [B1, B2] ⊆ ⟨mB, rB⟩

rC := △
(
|A| · rB

)
% |A| · rB ≤ rC

C2 := △
(
A ·mB + rC

)
% A ·mB + |A| · rB ≤ C2

C1 := ∇
(
A ·mB − rC

)
% C1 ≤ A ·mB − |A| · rB

As by Lemma 3.2, the algorithm is correct, also in the presence of underflow, there is no restriction on the

dimension n, and it requires 3 matrix multiplications.

For the analysis of the classical approach (1.5) and Algorithm 4.2, let x ∈ Fn and y = [y1, y2] = ⟨µ, ϱ⟩ ∈ IFn

with y1, y2 ∈ Fn, µ, ϱ ∈ Rn be given. Note that entries of x and of the infimum and supremum of y are

floating-point numbers, whereas µ and ϱ are real quantities and will be used only for the analysis. As in

(4.3), the power set dot product (1.3) is

PR(xTy) = {xT y : y ∈ y} = ⟨xTµ, |xT |ϱ⟩ = [xT (µ− Sϱ), xT (µ+ Sϱ)] ,(4.4)

where S ∈ Rn×n is the diagonal matrix with Sii = sign(xi). Note that the entries of r1 := µ − Sϱ and

r2 := µ+ Sϱ are entries of y1 or y2, so that r1, r2 ∈ Fn. Those entries are selected by the classical approach

(1.5) via a case distinction. This means rad(PR(xTy)) = |xT |rad(y) = |xT |ϱ = xT r2 − xT r1 and

classical(xT · y) = [∇(xT r1),∆(xT r2)] .(4.5)

Barring underflow, (2.14) gives

|∇(xT r1)− xT r1| ≤ γ2n|xT ||r1| and |∆(xT r2)− xT r2| ≤ γ2n|xT ||r2| .

The i-th entry of |r1|+ |r2| is |µi − ϱi|+ |µi + ϱi| = 2max(|µi|, |ϱi|), so that

rad
(
classical(xT · y)

)
≤ |xT |rad(y) + γ2n|xT |max(|µ|, ϱ) .(4.6)

Applied to the interval matrix multiplication this means

rad
(
classical(A ·B)

)
≤ |A|rad(B) + γ2n|A|max(|mid(B)|, rad(B)) .(4.7)

When using Algorithm 4.2, an additional overestimation occurs by the conversion of [B1, B2] into ⟨mB, rB⟩.
For the analysis barring underflow use Corollary 3.9 to see

|mB| ≤ (1 + 2eps)mid(B) and |rB| ≤ rad(B) + 2eps|B| .(4.8)

Abbreviating P := ∆(A ·mB), (2.14) yields |P −A ·mB| ≤ γ2n|A||mB|, so that

|C2 − (A ·mB + rC)| = |C2 − (P + rC) + (P −A ·mB)|
≤ 2eps|P + rC|+ γ2n|A||mB|
≤ 2eps(1 + γ2n)|A||mB|+ 2eps rC + γ2n|A||mB|
≤ γ2n+2|A|mid(B) + 2eps rC ,

(4.9)

12 S. M. RUMP

and similarly

|C1 − (A ·mB − rC)| ≤ γ2n+2|A|mid(B) + 2eps rC .(4.10)

Furthermore, (2.14) and (4.8) yield

rC ≤ (1 + γ2n)|A|rB ≤ (1 + γ2n)|A|
(
rad(B) + 2eps|B|

)
,

so that with a little computation

rad([C1, C2]) ≤ rC + γ2n+2|A|mid(B) + 2eps rC

≤ (1 + 2eps)(1 + γ2n)|A|
(
rad(B) + 2eps|B|

)
+ γ2n+2|A|mid(B)

≤ |A|rad(B) + 2eps(1 + 2eps)(1 + γ2n)|A||B|+ γ2n+2|A||B|
≤ |A|rad(B) + γ2n+4|A||B| .

(4.11)

In theory, (4.3) implies that without rounding errors the classical product based on (1.5) and the result of

Algorithm 4.2 is identical with the power set product PR(AB). In practice, Algorithm 4.2 uses the computed

⟨B1, B2⟩ rather than [B1, B2], and due to this additional overestimation one might conclude that Algorithm

4.2 cannot be superior to the classical interval matrix multiplication, i.e. classical(A ·B) ⊆ [C1, C2].

As already pointed out in [36], this is not true. First, we generate random matrices A,B ∈ Fn×n with

pseudo-random entries drawn from a normal distribution with mean zero and standard deviation one, and

define B := B · [1 − e, 1 + e]. Second, we use the Matlab function randsvd to generate a random matrix

B with cond(B) = 1010, set A to be the Matlab-approximation inv(B) of B−1 and B := B · [1 − e, 1 + e].

Results are displayed in Table 4.1, where a ratio less than 1 means that the inclusion computed by FImul3 is

narrower by that factor than the classical bound. In both test sets there is practically no difference between

Table 4.1

Minimum, mean, median and maximum ratio of the radii of the results of FImul3(A,B) and classical(A ·B), n = 100.

well-conditioned ill-conditioned

e minimum mean median maximum minimum mean median maximum

10−11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10−12 0.9998 1.0000 1.0000 1.0003 0.9998 1.0000 1.0000 1.0001

10−13 0.9977 1.0007 1.0006 1.0032 0.9994 1.0006 1.0006 1.0020

10−14 0.9846 1.0061 1.0058 1.0365 0.9953 1.0052 1.0053 1.0163

10−15 0.9298 1.0054 1.0022 1.1000 0.9428 1.0001 1.0000 1.0589

10−16 0.9375 1.1096 1.1087 1.2750 0.9763 1.1339 1.1353 1.2753

classical(A ·B) and FImul3(A,B) for larger values of e, but the situation changes for small values of e, i.e.

narrow intervals. The classical interval matrix multiplication is, in general, superior to Algorithm 4.2, but

sometimes the inevitable presence of rounding errors helps Algorithm 4.2 to produce the narrower inclusion.

The tests are performed with n = 100, for other dimensions the situation is similar. An explicit example for

that phenomenon is given in [36, (16)].

Another test generates badly scaled A and B using (in INTLAB notation)

A = (sign(randn(n)). ∗ exp(f ∗ randn(n)));
B = (sign(randn(n)). ∗ exp(f ∗ randn(n))). ∗ midrad(1, e);

(4.12)

for values f = 5 and f = 30. As can be seen in Table 4.2, there is not too much difference to the first test

set. The smallest value e = 10−16 produces narrow entries Bij with bounds differing in 2 bits or so. Then

the maximum ratio 1.6667 occurred when the width of the result of FImul3 was 5 bits, whereas that of the

classical method was 3 bits.

FAST INTERVAL MATRIX MULTIPLICATION 13

Table 4.2

Minimum, mean, median and maximum ratio of the radii of the results of FImul3(A,B) and classical(A ·B), n = 100.

wide range f = 5 very wide range f = 30

e minimum mean median maximum minimum mean median maximum

10−11 0.9999 1.0000 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000

10−12 0.9996 1.0001 1.0000 1.0007 0.9998 1.0001 1.0000 1.0004

10−13 0.9964 1.0011 1.0012 1.0060 0.9980 1.0012 1.0013 1.0063

10−14 0.9806 1.0086 1.0089 1.0400 0.9828 1.0096 1.0100 1.0417

10−15 0.9091 1.0141 1.0042 1.2222 0.8750 1.0188 1.0030 1.1429

10−16 0.9545 1.0549 1.0417 1.6667 0.9444 1.0547 1.0345 1.6667

One matrix multiplication may be saved by using Theorem 2.1 to estimate the error in the floating-point

computation of A ·mB. The algorithm is as follows.

Algorithm 4.3. Point matrix times interval matrix, requires 2 point matrix multiplications.

function [C1,C2] = FImul2(A,B)

mB := △
(
(B1 +B2)/2

)
rB := △

(
mB −B1

)
% [B1, B2] ⊆ ⟨mB, rB⟩

mC := 2
(
A ·mB

)
% floating-point approximation

rC := △
(
|A| ·

[
(n+ 2)eps|mB|+ rB

]
+ realmin

)
% |2(mC −A ·B)|+ |A| · rB ≤ rC

C2 := △
(
mC + rC

)
% A ·mB + |A| · rB ≤ C2

C1 := ∇
(
mC − rC

)
% C1 ≤ A ·mB − |A| · rB

The algorithm is correct, also in the presence of underflow, provided 2(n+2)eps ≤ 1. Algorithm 4.3 requires

2 matrix multiplications. The proof of validity follows by Theorem 2.1, by

ufp
(
2(|A| · |mB|)

)
≤ 2(|A| · |mB|) ≤ △(|A| · |mB|)(4.13)

and the proper choice of rounding modes. If no underflow occurs and ignoring realmin, the radius rC

computed by Algorithm 4.3 satisfies

rC ≤ (1 + γ2n)|A|(1 + eps)
[
(1 + eps)(n+ 2)eps|mB|+ rB

]
,

where the first factor 1 + eps stems from the addition and the second from the multiplication by (n + 2)

in
[
(n+ 2)eps|mB|+ rB

]
(multiplication by eps causes no rounding error). The estimates (4.9) and (4.10)

remain valid, so that similar to (4.11) we obtain

rad([C1, C2]) ≤ (1 + 2eps)rC + γ2n+2|A|mid(B)

≤ |A|rad(B) + γ2n+3|A|rad(B) + γ3|A||B|+ γ3n+6|A|mid(B)

≤ |A|rad(B) + γ3n+9|A||B|
(4.14)

for [C1, C2] computed by Algorithm 4.3. By (4.3), the radius of the power set product PR(AB) is |A|rad(B),

so that using (4.7), (4.11) and (4.14) we can summarize the results as follows.

Theorem 4.4. Let A ∈ Fn×n and B ∈ IFn×n be given. If no underflow occurs and ignoring realmin in

Algorithm 4.3, then

rad
(
PR(AB)

)
= |A|rad(B) ,

rad
(
classical(A ·B)

)
≤ |A|rad(B) + γ2n|A|max(|mid(B)|, rad(B)) ,

rad
(
Algo 4.2

)
≤ |A|rad(B) + γ2n+4|A||B|

rad
(
Algo 4.3

)
≤ |A|rad(B) + γ3n+9|A||B|

14 S. M. RUMP

is true, where rad
(
Algo4.x

)
denotes the radius of the result [C1, C2] ∈ IFn×n computed by Algorithm FImulx.

Remark. Note that Theorem 4.4 states estimates of the radii, based on the standard estimates (2.14) of the

error of a matrix product. The latter are essentially sharp, but do in general grossly overestimate the true

error. So the estimates should, if ever, be compared with care. Having said this, we see that the estimates

are of a similar quality provided the interval entries are not too wide; the additional conversion of [B1, B2]

into midpoint-radius representation is hardly visible.

4.3. Two interval matrices. The classical approach (1.5) for an inclusion of PR(AB) requires 2n3

switches of the rounding mode and jeopardizes compiler optimization. Also in Profil [18, 19] there is not

much cure for this, see Table 1.1. The standard way to compute the product of two interval matrices in

midpoint-radius representation is as follows.

⟨mA, rA⟩ · ⟨mB, rB⟩ ⊆ ⟨ mAmB , |mA|rB + rA(|mB|+ rB) ⟩ .(4.15)

For mA,mB, rA, rB ∈ Rn×n, rA, rB ≥ 0, without the presence of rounding errors, the right hand side

includes but overestimates the power set product PR(AB). Note that in textbooks often the formula

|mA|rB + rA|mB|+ rArB for the radius is found which requires an additional matrix multiplication.

For an implementation, the two interval matrices A = [A1, A2],B = [B1, B2] ∈ IFn×n in infimum-supremum

representation are first converted into midpoint-radius representation, and as in Algorithms 4.2 and 4.3 an

inclusion of the products of the midpoints is necessary.

Algorithm 4.5. Interval matrix times interval matrix, requires 4 point matrix multiplications.

function [C1,C2] = IImul4(A,B)

mA := △
(
(A1 +A2)/2

)
; rA := △(mA−A1) % [A1, A2] ⊆ ⟨mA, rA⟩

mB := △
(
(B1 +B2)/2

)
; rB := △(mB −B1) % [B1, B2] ⊆ ⟨mB, rB⟩

rC := △
(
|mA| · rB + rA · (|mB|+ rB)

)
% Γ := |mA| · rB + rA · (|mB|+ rB) ≤ rC

C2 := △
(
mA ·mB + rC

)
% mA ·mB + Γ ≤ C2

C1 := ∇
(
mA ·mB − rC

)
% C1 ≤ mA ·mB − Γ

The algorithm is correct, also in the presence of underflow, there is no restriction in the dimension n, and it

requires 4 matrix multiplications.

The radius rB is used twice in (4.15), and the well-known dependency problem [28, Chapter 4] occurs. This

is the major source of overestimation of the inclusion [C1, C2] computed by Algorithm 4.5. The amount of

overestimation has been estimated in [36] using the relative precision of the input intervals.

Definition 4.6. An interval ⟨mA, rA⟩ not containing 0 is said to be of relative precision e, 0 ≤ e ∈ R, if

rA ≤ e · |mA| .

An interval containing 0 is said to be of relative precision 1.

Suppose all entries in A and B are of relative precision e and f , respectively. Then Proposition 2.7 in [36]

shows that the maximum overestimation of the result computed by (4.15) compared to PR(AB) is

at most a factor 1 +
ef

e+ f
in radius .

This value is globally bounded by 1.5, and it is only possible for wide input including zero. For example,

if all entries in A and B are at least of relative precision 0.01 or 1%, then the overestimation in radius is

bounded by a factor 1.005. So if a radius of the result is 0.01, say, then it is overestimated to 0.01005.

FAST INTERVAL MATRIX MULTIPLICATION 15

Additional sources of overestimation are the conversion of the input matrices into midpoint-radius repre-

sentation and the inevitable presence of rounding errors. Except for very narrow input this is negligible

compared to the inherent overestimation just discussed, and a thorough analysis or explicit formulas do not

reveal much additional insight. A rough analysis shows that by (2.14) and Corollary 3.9 the rounding errors

in the computation of the midpoint are bounded by γ2n|mA||mB| ≤ γ2n+2|mid(A)||mid(B)|, and that of

the radius by γp|mA||rB|+ γq|rA|(|mB|+ rB) for p, q of the order n, so that the size of all rounding errors

is bounded by

γφn|A||B|(4.16)

for a small constant φ. Thus rounding errors become only relevant for very narrow input A,B. In that case,

however, the result is narrow as well. Nevertheless also a small overestimation may become significant when

the result is used in further computations.

As before, one matrix multiplication may be saved by computing the midpoint mA · mB in rounding to

nearest and estimating the error by Theorem 2.1.

Algorithm 4.7. Interval matrix times interval matrix, requires 3 point matrix multiplications.

function [C1,C2] = IImul3(A,B)

mA := △
(
(A1 +A2)/2

)
; rA := △(mA−A1) % [A1, A2] ⊆ ⟨mA, rA⟩

mB := △
(
(B1 +B2)/2

)
; rB := △(mB −B1) % [B1, B2] ⊆ ⟨mB, rB⟩

mC := 2
(
mA ·mB

)
% floating-point approximation

rB′ := △
(
(n+ 2)eps|mB|+ rB

)
% includes error of 2(mA ·mB)

rC := △
(
|mA| · rB′ + realmin+ rA · (|mB|+ rB)

)
% Γ := |mA| · rB + rA · (|mB|+ rB) ≤ rC

C2 := △
(
mC + rC

)
% mA ·mB + Γ ≤ C2

C1 := ∇
(
mC − rC

)
% C1 ≤ mA ·mB − Γ

The algorithm is correct, also in the presence of underflow, provided 2(n + 2)eps ≤ 1, and it requires 3

matrix multiplications. The proof of validity follows as in (4.13). A rough analysis shows that all rounding

errors together are of the same order γφ′n|A||B| as in (4.16) with a slightly increased φ′.

Recently Hong Diep Nguyen and Nathalie Revol [29] suggested an alternative diminishing overestimation.

For interval matrices A = ⟨mA, rA⟩, B = ⟨mB, rB⟩, mA,mB, rA, rB ∈ Rn×n, rA, rB ≥ 0, define (using

Matlab notation)

ρA := sign(mA). ∗min(|mA|, rA) and ρB := sign(mB). ∗min(|mB|, rB) .(4.17)

Then, without the presence of rounding errors,

PR
(
AB

)
⊆ ⟨ mAmB + ρAρB , |mA|rB + rA(|mB|+ rB)− |ρA||ρB| ⟩ .(4.18)

This can be seen using the fact that for scalar intervals a,b the true product c = ⟨mc, rc⟩ satisfies [28,

Proposition 1.6.5]

mc := mamb+ sign(mamb)min
(
ra|mb|, |ma|rb, rarb

)
rc := max

(
ra(|mb|+ rb), (|ma|+ ra)rb, ra|mb|+ |ma|rb

)
.

(4.19)

Note that (4.19) does not extend directly to interval matrices. Nguyen and Revol show that the maximum

overestimation of (4.18) is at most a factor 4− 2
√
2 ≈ 1.18 in radius, compared to maximally 1.5 for (4.15).

They define the following algorithm to compute an inclusion of PR
(
AB

)
.

16 S. M. RUMP

Algorithm 4.8. Interval matrix times interval matrix, requires 7 point matrix multiplications.

function [C1,C2] = IImul7(A,B)

mA := △
(
(A1 +A2)/2

)
; rA := △(mA−A1) % [A1, A2] ⊆ ⟨mA, rA⟩

mB := △
(
(B1 +B2)/2

)
; rB := △(mB −B1) % [B1, B2] ⊆ ⟨mB, rB⟩

ρA := sign(mA). ∗min(|mA|, rA)

ρB := sign(mB). ∗min(|mB|, rB) % quantities according to (4.17)

rC := △
(
|mA| · rB + rA · (|mB|+ rB) + (−|ρA|) · |ρB|

)
% upper bound for radius Γ in (4.18)

C2 := △
(
mA ·mB + ρA · ρB + rC

)
% mA ·mB + ρA · ρB + Γ ≤ C2

C1 := ∇
(
mA ·mB + ρA · ρB − rC

)
% C1 ≤ mA ·mB + ρA · ρB − Γ

The algorithm is correct, also in the presence of underflow, there is no restriction on the dimension n, and

it requires 7 matrix multiplications.

Again there are three sources of overestimation when implementing (4.18): The inherent overestimation

of at most a factor 4 − 2
√
2 ≈ 1.18 in radius, the conversion into midpoint-radius representation and the

inevitable rounding errors. A rough analysis uses |ρA| = min(|mA|, rA) and |ρB| = min(|mB|, rB), (2.14)

and Corollary 3.9 to see that the errors in the computation of the midpoint are bounded by

γp(|mA||mB|+ |ρA||ρB|) ≤ γp(|mA|+ rA)(|mB|+ rB) ≤ γq(|A|+ |B|) ,

and the rounding errors in the radius are bounded similarly by γr(|A|+|B|) for p, q, r of the order n. So again

the total overestimation due to midpoint-radius conversion and rounding errors is bounded by γψn|A||B| as
in (4.16) for small ψ.

In order to develop a faster algorithm, we first rewrite the radius in (4.18) into

Γ := |mA|rB + rA(|mB|+ rB)− |ρA||ρB|
= (|mA|+ rA)(|mB|+ rB)−

(
|mA||mB|+ |ρA||ρB|

)
=: Γ1 − Γ2 .

(4.20)

Note that without the presence of rounding errors, the radius in (4.18) is equal to Γ. From a numerical point

of view, a drawback is that for narrow interval matrices two quantities Γ1,Γ2 of similar size are subtracted

and numerical cancellation may occur. This is visible in the computational results, see Table 5.6.

A rough analysis reveals that this drawback applies only to very narrow intervals. The rounding errors

in the computation of Γ1 are bounded by γp(|mA| + rA)(|mB| + rB) ≤ γp′ |A||B|, and those of Γ2 by

γq(|mA||mB|+ |ρA||ρB|) ≤ γq′ |A||B|, so that again, as in (4.16), the total overestimation due to midpoint-

radius conversion and rounding errors is bounded by γψ′n|A||B| for small ψ′. Note, however, that error

estimates of type (2.13) or (2.14) are absolute bounds and do not reflect a possible cancellation.

The advantage is that, in contrast to (4.18), formulation (4.20) offers the possibility to save two matrix

multiplications: By Theorem 2.1 both the error of the midpoint approximation 2
(
mAmB + ρAρB

)
and of

the approximation µ := 2
(
|mA||mB|+ |ρA||ρB|

)
of the second part Γ2 of the radius can be estimated using

the same quantity µ. The corresponding algorithm is as follows.

FAST INTERVAL MATRIX MULTIPLICATION 17

Algorithm 4.9. Interval matrix times interval matrix, requires 5 point matrix multiplications.

function [C1,C2] = IImul5(A,B)

mA := △
(
(A1 +A2)/2

)
; rA := △(mA−A1) % [A1, A2] ⊆ ⟨mA, rA⟩

mB := △
(
(B1 +B2)/2

)
; rB := △(mB −B1) % [B1, B2] ⊆ ⟨mB, rB⟩

ρA := sign(mA). ∗min(|mA|, rA)

ρB := sign(mB). ∗min(|mB|, rB) % quantities according to (4.17)

mC := 2
(
mA ·mB + ρA · ρB

)
% midpoint in rounding to nearest

µ := 2
(
|mA| · |mB|+ |ρA| · |ρB|

)
% used for Γ2 and error bound

γ := △
(
(2n+ 2)epsufp(µ) + realmin

)
% error bound

rC := △
(
(|mA|+ rA) · (|mB|+ rB)− µ+ 2γ

)
% upper bound for Γ including error in mC

C2 := △
(
mC + rC

)
% mA ·mB + ρA · ρB + Γ ≤ C2

C1 := ∇
(
mC − rC

)
% C1 ≤ mA ·mB + ρA · ρB − Γ

The algorithm is correct, also in the presence of underflow, provided 2(2n + 2)eps ≤ 1, and it requires 5

matrix multiplications.

For the proof of correctness of the Algorithm 4.9 denote M := mAmB + ρAρB ∈ Rn×n, so that

PR
(
AB

)
⊆ ⟨ M , Γ1 − Γ2 ⟩ .(4.21)

by (4.18) and (4.20). The computation of mC can be interpreted as the multiplication of an n× 2n and an

2n× n matrix. Moreover, it can be assumed that the order of calculation of mC and µ is the same, so that

Theorem 2.1 implies

|M −mC| ≤ 2((2n+ 2)epsufp(µ) + realmin) ≤ γ .

Applying Theorem 2.1 again to the approximation µ of Γ2 gives

|Γ2 − µ| ≤ γ .

Thus rounding upwards in the computation of rC implies

rC ≥ Γ1 − (µ− γ) + γ ≥ Γ1 − Γ2 + γ ,

so that

C2 ≥ mC + rC ≥ mC + γ + Γ1 − Γ2 ≥M + Γ1 − Γ2

and

C1 ≤ mC − rC ≤ mC − γ − (Γ1 − Γ2) ≤M − (Γ1 − Γ2) .

Thus (4.21) shows that PR
(
AB

)
⊆ [C1, C2] for the result computed by Algorithm 4.9.

5. Computational results. In this section we show computational results for the presented algorithms.

We compare three methods for point times interval matrix and five methods for interval times interval matrix

as given in Tables 5.1 and 5.2, respectively. Moreover, the influence to the quality of the inclusion in an

application such as the solution of linear systems is discussed. In terms of computing time, algorithms

based on BLAS3 matrix operations are the only reasonable way to implement interval matrix multiplication

in Matlab (cf. [39, Table 9.3]) because other methods suffer severely from interpretation overhead. Therefore

18 S. M. RUMP

Table 5.1

Methods for point matrix times interval matrix.

method reference # matrix multiplications

classical classical method (1.5) very slow

FImul3 Algorithm 4.2 3

FImul2 Algorithm 4.3 2

Table 5.2

Methods for interval matrix times interval matrix.

method reference # matrix multiplications

classical classical method (1.5) very slow

IImul4 Algorithm 4.5 4

IImul7 Algorithm 4.8 7

IImul3 Algorithm 4.7 3

IImul5 Algorithm 4.9 5

we give computing times measured in Matlab for the algorithms in Tables 5.1 and 5.2 except for the classical

method.

For smaller dimension matrix multiplication is so fast that a reasonable timing is difficult, so the numbers

in the first rows of Table 5.3 should be read with care. Having said this, for smaller dimension there is

a significant interpretation overhead, for larger dimensions the theoretically best possible ratio is almost

achieved. Note that in a C-implementation the measured ratio is also for smaller dimensions closer to the

theoretical ratio, similar to the results in Table 1.1.

Table 5.3

Ratio of computing time in Matlab for algorithms FImul2, FImul3, IImul3, IImul4, IImul5 and IImul7 for random n× n

matrices of different dimension, one floating-point matrix multiplication normed to 1.

point x interval matrix interval x interval matrix

n FImul2 FImul3 IImul3 IImul4 IImul5 IImul7

100 6.99 7.41 9.80 10.16 19.47 19.25

200 4.56 5.87 6.82 8.23 13.02 15.27

500 4.27 5.58 6.43 7.44 11.01 13.49

1000 3.74 3.76 4.48 5.61 7.31 9.01

2000 2.25 3.20 3.34 4.30 5.82 7.59

5000 2.03 3.02 3.06 4.01 5.20 7.08

Concerning accuracy we generate for point matrix times interval matrix factors A, B as follows (in Matlab

notation):

A = randn(n); % n x n random matrix

B = midrad(randn(n),e); % random interval matrix, each entry with fixed radius e

The statement randn(n) generates an n × n-matrix with pseudo-random entries drawn from a normal

distribution with mean zero and standard deviation one. The second factor B has entries with random

midpoint and constant radius e. For e=1 about 70% of all entries are intervals with zero in the interior, for

e=0.01 about 0.7%.

Denote the relative precision (according to Definition 4.6) of an interval matrix B ∈ Fn×n by rel(B) ∈ Rn×n.
Let C ∈ Fn×n be the result of the matrix product computed with one of the methods listed in Table 5.1.

FAST INTERVAL MATRIX MULTIPLICATION 19

Then Table 5.4 displays the median and maximum of the entrywise ratio of the relative precision of C and

the narrowest (optimal) interval enclosure A ·B as defined by (1.4). For all kind of data the classical method

Table 5.4

Point matrix times interval matrix: median and maximum of the ratios of relative precision to the optimal inclusion for

randomly generated matrices (fixed dimension n = 100 for both factors).

classical FImul3 FImul2

n e median max median max median max

100 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 0.01 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 10−5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 10−10 1.0000 1.0000 1.0000 1.0000 1.0001 1.0001

100 10−14 1.0447 1.2881 1.0454 1.2712 1.8873 2.1983

100 10−15 1.4279 3.1000 1.4343 3.1000 9.2285 12.6346

and FImul3 based on midpoint radius arithmetic deliver similar results. This seems natural because without

the presence of rounding errors both definitions (1.5) and (4.3) are identical and equal to A ·B.

But also the faster version FImul2 with a priori estimation of the error in the floating-point to nearest

midpoint computation computes results of similar quality, at least for wide input intervals. For small width

of the second factor, however, it deteriorates.

The largest overestimation with the factor 12.6346 should not be overvalued because the radius of the second

factor is small. The actual components responsible are

[12.84259857639101, 12.84259857639336] and [12.84259857639208, 12.84259857639227]

with a relative precision of 9.1 ·10−14 and 7.2 ·10−15, respectively. So in either case the inclusion is tight. The

Table 5.5

Point matrix times interval matrix for badly scaled matrices ((4.12) with f = 5): median and maximum of the ratios of

relative precision to the optimal inclusion (fixed dimension n = 100 for both factors).

classical FImul3 FImul2

n e median max median max median max

100 10−10 1.0000 1.0001 1.0000 1.0001 1.0001 1.0001

100 10−14 1.2875 2.1087 1.2985 2.1087 2.1111 2.1569

100 10−15 3.4286 11.2000 3.4815 11.2000 10.3000 12.4000

test was repeated with ill-conditioned input data as those for Table 4.1, but not much difference occurred

except that the values for the maximum of the ratios decreased slightly. For badly scaled input data generated

by (4.12) with f = 5 the results are identical for e ≥ 10−10, but for smaller values the pictures changes as

shown in Table 5.5. We show the results for f = 5, for f = 30 they are similar. Now the median of

overestimation grows both for the classical method as well as for FImul3, and the worst case for all three

algorithms is not too far apart.

Next we show results for interval matrix times interval matrix. First both matrices are generated by

midrad(randn(n),e), using the same fixed radius e for all entries of both factors. Again results on the

ratios of the relative precision to the optimal inclusion are displayed. As can be seen in Table 5.6 there is

not much difference between the classical, the midpoint-radius approach IImul4 and the approach IImul7 by

Nguyen and Revol. As expected, the algorithms IImul3 and IImul5 based on a priori floating-point error

estimates overestimate the true result, in particular for small width of the input matrices.

20 S. M. RUMP

Table 5.6

Interval matrix times interval matrix: median and maximum of the ratios of relative precision to the optimal inclusion

for randomly generated matrices (fixed dimension n = 100 for both factors).

classical IImul4 IImul7 IImul3 IImul5

e median max median max median max median max median max

100 1.0000 1.0000 1.0046 1.0061 1.0046 1.0061 1.6422 1.7622 1.0046 1.0061

10 1.0000 1.0000 1.0420 1.0559 1.0363 1.0474 6.6361 7.6766 1.0363 1.0474

1 1.0000 1.0000 1.2007 1.2574 1.0188 1.0325 30.0113 35.2913 1.0188 1.0325

0.01 1.0000 1.0000 1.0062 1.0078 1.0000 1.0000 40.6290 48.7160 1.0000 1.0000

10−5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 40.0357 48.3276 1.0000 1.0000

10−10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 40.2990 48.1929 1.0001 1.0001

10−14 1.0226 1.1264 1.0231 1.1226 1.0234 1.1226 75.1070 84.1234 1.6547 2.1914

10−15 1.2097 2.0444 1.2129 2.0667 1.2158 2.0667 366.3551 421.7162 6.9774 11.9677

A possibly catastrophic cancellation in a matrix product, which may be hazardous in floating-point computa-

tions, is not possible if both factors are interval matrices. Nevertheless the test was repeated for badly scaled

input data, generated by (4.12) with f = 5. The results are shown in Table 5.7 for f = 5, for f = 30 they are

similar. Again there is not much difference between the classical, the midpoint-radius approach IImul4 and

the approach IImul7 by Nguyen and Revol. But now algorithm IImul3 based on a priori floating-point error

estimates is much better for small widths of the input matrices, not too far from the first three algorithms.

Despite the fact that the classical method is prohibitively slow, one should also remember that, due to

rounding errors, all methods overestimate the narrowest inclusion A ·B.

Table 5.7

Interval matrix times interval matrix for badly scaled matrices ((4.12) with f = 5): median and maximum of the ratios

of relative precision to the optimal inclusion (fixed dimension n = 100 for both factors).

classical IImul4 IImul7 IImul3 IImul5

e median max median max median max median max median max

100 1.0000 1.0000 1.0099 1.0099 1.0098 1.0098 1.0099 1.0099 1.0098 1.0098

10 1.0000 1.0000 1.0909 1.0909 1.0818 1.0818 1.0909 1.0909 1.0818 1.0818

1 1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 1.5000 1.5000 1.0000 1.0000

0.01 1.0000 1.0000 1.0050 1.0050 1.0000 1.0000 1.0050 1.0050 1.0000 1.0000

10−5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10−10 1.0000 1.0001 1.0000 1.0001 1.0000 1.0001 1.0001 1.0001 1.0001 1.0002

10−14 1.1432 1.5426 1.1523 1.5484 1.1549 1.5591 1.5591 1.5773 1.9888 2.7128

10−15 2.1333 5.5455 2.1579 5.5455 2.1818 5.6364 5.7059 6.2500 9.3571 15.5455

One may draw the conclusion that, for example, Algorithm IImul3 with an overestimation up to more than

a factor 400 in radius is of not much value. However, this means to complain on a high level. The worst case

with an overestimation of a factor 421.7 in radius in Table 5.6 are the intervals

[−1.13508640785746,−1.13508640768590] and [−1.13508640777189,−1.13508640777147] ,

the inclusion by Algorithm IImul3 and the optimal inclusion, respectively. The relative precision is

7.56 · 10−11 and 1.79 · 10−13 ,

respectively, so both inclusions guarantee at least 10 correct figures. Which algorithm should be used depends

on the need of such high accuracy, and on whether the results are used in further computations.

FAST INTERVAL MATRIX MULTIPLICATION 21

To shed additional light on this, we consider the application of interval arithmetic in so-called verification

methods, namely the computation of an inclusion of the solution of a numerical problem. Such numerical

problems cover systems of linear and nonlinear equations, eigenvalue problems, ordinary and partial differ-

ential equations etc. For those problems, bounds for a solution are computed including a proof of solvability

of the problem and correctness of the bounds. For details, see [28, 39].

Many nonlinear problems eventually lead to the solution of a system of linear equations, for example nonlinear

systems [39, Chapter 13], ordinary differential equations (cf. [39, Chapter 15]), or partial differential equations

[24], [26], [44], [45], [46]), [39, Chapter 16]. These linear systems often consist of an interval matrix A and

interval right hand side b. In this case all solutions of linear systems Ax = b with A ∈ A and b ∈ b are

included. This is one of the classical applications of interval matrix multiplication.

The following, often used [1, 2, 17] verification algorithm for linear systems is taken from [35]. Following it

is presented in executable INTLAB code [39, Chapter 10]. The type casts in the computation of C and Z

ensure that interval operations are used for point input data A and/or b.

function XX = VerifyLinSys(A,b)

XX = NaN; % initialization

R = inv(mid(A)); % approximate inverse

xs = R*mid(b); % approximate solution

xs = xs + R*(mid(b)-mid(A)*xs); % residual iteration for backward stability

C = eye(dim(A))-R*intval(A); % iteration matrix

Z = R*(b-A*intval(xs));

X = Z; iter = 0;

while iter<15 % interval iteration with epsilon-inflation

iter = iter+1;

Y = X*infsup(0.9,1.1) + 1e-20*infsup(-1,1);

X = Z + C*Y; % interval iteration

if all(in0(X,Y)), XX = xs + X; return; end

end

For a given (interval) matrix A and (interval) right hand side b, the result is either a valid inclusion together

with the proof of solvability, i.e. all system matrices are nonsingular, or, the result NaN indicates that no

inclusion could be computed in the given precision. In the latter case, likely the problem is too ill-conditioned.

In any case, no false result is possible. Note that proving non-singularity of all matrices within an interval

matrix is an NP-hard problem [34].

Multiplications of a point and an interval quantity (vectors are considered as a matrix with one column)

are R*intval(A), R*res for res=b-A*intval(xs), and A*intval(xs), and the only multiplication of two

interval quantities is C*Y.

We now replace all those operations by one of the presented algorithms. The test data is generated as follows.

A = gallery(’randsvd’,n,c) * midrad(1,e);

b = A*ones(n,1);

It means the midpoint matrix is randomly generated with condition number c, the radius e introducing a

constant relative error for all components, and the right hand side is computed such that the true solution

includes the vector of 1′s. Note that the interval matrix most likely contains a singular matrix if the product

of the condition number c and the radius e exceeds one. Therefore ce < 1 is a natural boundary for

verification.

The first Table 5.8 shows all combinations of algorithms for fixed dimension n = 100, condition number

22 S. M. RUMP

c = 1010 and radius e = 10−12. For reference we compute an inclusion of the true solution set by more

sophisticated means. More precisely, an outer and inner inclusion is computed (see [39], Section 10.6),

which proves that the data in Table 5.8 is correct. We display the median of the entrywise ratios between

the relative precision of the inclusion computed by VerifyLinSys and the reference inclusion. For example,

a displayed value 1.0057 means that using FImul2 and IImul5, the inclusion by VerifyLinSys is by about

0.6 % worse than the optimal inclusion.

Table 5.8

Ratio of relative precision of the result of VerifyLinSys and reference inclusion for fixed dimension n = 100, condition

number c = 1010 and radius e = 10−12.

classical IImul4 IImul7 IImul3 IImul5

classical 1.0000 1.0000 1.0000 1.0000 1.0000

FImul3 1.0000 1.0000 1.0000 1.0000 1.0000

FImul2 1.0057 1.0057 1.0057 1.0057 1.0057

As can be seen there is almost no difference whatever combination of method is used. This is true as long

the radii of the input data is about e = 10−12 or larger. For smaller radii, the overestimation by a priori

estimating the error of floating-point operations in FImul2 introduces increasing overestimation. As an

example, for condition number c = 102 and radius e = 10−14 the results are displayed in Table 5.9.

Table 5.9

Ratio of relative precision of the result of VerifyLinSys and reference inclusion for fixed dimension n = 100, condition

number c = 102 and radius e = 10−14.

classical IImul4 IImul7 IImul3 IImul5

classical 1.0000 1.0000 1.0000 1.0000 1.0000

FImul3 1.0000 1.0000 1.0000 1.0000 1.0000

FImul2 1.4962 1.4962 1.4962 1.4962 1.4962

But again criticizing a “large” ratio 1.4962 is lamenting on a high level. The maximum ratio of relative

precisions of all possibilities using FImul2 compared to the reference solution was 1.4987. The corresponding

component of the inclusion by VerifyLinSys and the reference inclusion is

[0.99999999997397, 1.00000000002604] and [0.99999999998268, 1.00000000001732]

with a relative precision of 2.60 · 10−11 and 1.73 · 10−11, respectively.

Moreover, we choose badly scaled right hand sides such as

b = exp(f ∗ randn(n, 1)); and b = A ∗ exp(f ∗ randn(n, 1));

for some factor f. For different condition numbers and a moderate factor f = 5, the results are similar to

those in Tables 5.8 and 5.9. For a larger factor such as f = 15, all ratios in the third rows (using FImul2)

increase to about 2 for b = exp(f*randn(n,1)), whereas for b = A*exp(f*randn(n,1)) they are similar

or drop to about 1.2. Summarizing, the qualitative behavior does not change significantly.

Up to now, the only multiplication of interval quantities occurred in C*Y requiring only O(n2) operations.

To show the influence of the different algorithms for interval times interval matrix multiplication, we apply

Algorithm VerifyLinSys to a matrix right hand side. We choose the identity matrix, so that an inclusion

of the inverse of all matrices within the input interval matrix is included. In this case the computation of

C*Y is a multiplication of two interval matrices, and the effect of using the different versions IImulk can be

studied in better detail. We first perform all point times interval matrix multiplications by the standard

FAST INTERVAL MATRIX MULTIPLICATION 23

midpoint-radius approach FImul3. The results are displayed in Table 5.10. Recall that ce < 1 must be

satisfied.

Table 5.10

Ratio of relative precision of the result of VerifyLinSys and reference inclusion for matrix inversion, fixed dimension

n = 100, and point matrix times interval matrix always by FImul3.

c e classical IImul4 IImul7 IImul3 IImul5

102 10−4 1.0000 1.0000 1.0000 1.0000 1.0000

102 10−8 1.0000 1.0000 1.0000 1.0000 1.0000

105 10−8 1.0000 1.0000 1.0000 1.0000 1.0000

102 10−12 1.0000 1.0000 1.0000 1.0000 1.0000

105 10−12 1.0000 1.0000 1.0000 1.0000 1.0000

1010 10−12 1.0000 1.0000 1.0000 1.0000 1.0000

102 10−14 1.0001 1.0001 1.0001 1.0001 1.0001

105 10−14 1.0000 1.0000 1.0000 1.0000 1.0000

1010 10−14 1.0001 1.0001 1.0001 1.0001 1.0001

1013 10−14 1.0020 1.0020 1.0020 1.0012 1.0020

Obviously there is almost no difference using any algorithm IImulℓ together with Algorithm IImul3. Finally

we display the same table using always a priori estimation of rounding errors by FImul2 rather than FImul3.

The results are displayed in Table 5.11. Now the inclusion may become 10 times as wide for narrow input

data.

Table 5.11

Ratio of relative precision of the result of VerifyLinSys and reference inclusion for matrix inversion, fixed dimension

n = 100, and point matrix times interval matrix always by FImul2.

c e classical IImul4 IImul7 IImul3 IImul5

102 10−4 1.0000 1.0000 1.0000 1.0000 1.0000

102 10−8 1.0000 1.0000 1.0000 1.0000 1.0000

105 10−8 1.0000 1.0000 1.0000 1.0000 1.0000

102 10−12 1.0109 1.0109 1.0109 1.0109 1.0109

105 10−12 1.0109 1.0109 1.0109 1.0109 1.0109

1010 10−12 1.0112 1.0112 1.0112 1.0112 1.0112

102 10−14 2.0209 2.0209 2.0209 2.0209 2.0209

105 10−14 2.0195 2.0195 2.0195 2.0195 2.0195

1010 10−14 2.0256 2.0256 2.0256 2.0256 2.0256

1013 10−14 2.7290 2.7293 2.7293 2.7237 2.7293

102 10−15 7.7992 7.7992 7.7992 7.7992 7.7992

105 10−15 7.7884 7.7884 7.7884 7.7884 7.7884

1010 10−15 7.8261 7.8261 7.8261 7.8261 7.8261

1013 10−15 9.4548 9.4554 9.4554 9.4487 9.4554

But once again a large ratio means that the optimal inclusion is overestimated by this factor. For example,

for condition number c = 105 and radius e = 10−15 the worst ratio happens for the inclusion components

103 · [−2.32788143660617,−2.32788139435358] and 103 · [−2.32788141797750,−2.32788141297821]

with relative precision 9.08 · 10−9 and 1.07 · 10−9, respectively, both guaranteeing at least 8 correct figures.

24 S. M. RUMP

Therefore, from a practical point of view, there seems not too much difference in choosing any of the proposed

methods FImulk or IImulℓ.

We note that from a mathematical point of view, the interval iteration in Algorithm VerifyLinSys can only

be successful if |I −RA| is convergent (rather than I −RA as in point iterations), i.e. has a spectral radius

less than 1. In a certain way this is even necessary and sufficient [35].

6. Appendix. To prove Theorem 3.8 note that m = fl∆(µ) by Lemma 3.2, so that m /∈ U and (2.9)

yield 0 ≤ m−µ ≤ 2epsufp(µ), the first inequality in (3.16). To establish a contradiction, suppose the second

inequality is not true. Then

2eps
(
|µ|+ ϱ) < r − ϱ = ∆(m− a)− ϱ ≤ m− a+ 2epsufp(m− a)− ϱ

= m− µ+ 2epsufp(m− µ+ µ− a)

≤ m− µ+ 2eps
(
|m− µ|+ |µ− a|

)
= (1 + 2eps)(m− µ) + 2epsϱ

≤ 2eps(1 + 2eps) ufp(µ) + 2epsϱ ,

(6.1)

where m− a /∈ U because otherwise r = ∆(m− a) = m− a ∈ U was used, and therefore

m > µ+
2eps

1 + 2eps
|µ| and |µ| < (1 + 2eps) ufp(µ) .(6.2)

If |µ| = ufp(µ) then m = µ, and (2.11) implies r − ϱ = ∆(ϱ) − ϱ ≤ 2epsufp(ϱ) because ϱ = m − a /∈ U, a
contradiction. Hence (2.7) and (6.2) yield

ufp(µ) < |µ| < (1 + 2eps) ufp(µ) ,(6.3)

i.e. |µ| is strictly between ufp(µ) and one of its floating-point neighbors. If ufp(µ) ≤ realmin/2, then

m = fl∆(µ) ∈ U, thus ufp(µ) ≥ realmin, and the predecessor and successor of ufp(µ) are

pred
(
ufp(µ)

)
= (1− eps) ufp(µ) and succ

(
ufp(µ)

)
= (1 + 2eps) ufp(µ) .(6.4)

Suppose µ < 0. Then, using (6.3) and (6.2),

−ufp(µ) = fl∆(µ) = m > µ− 2eps

1 + 2eps
µ =

−1

1 + 2eps
|µ| ,

so that |µ| > (1 + 2eps)ufp(µ), contradicting (6.3). It follows µ ≥ 0, and m = fl∆(µ) = (1 + 2eps)ufp(µ) by

(6.3) and (6.4). Furthermore, (6.3) and (6.2) yield

ufp(µ) < µ <
1 + 2eps

1 + 4eps
m < (1 + 4eps2) ufp(µ) .(6.5)

Suppose ufp(µ) = b/2. Then ufp(µ) < µ = a
2 + ufp(µ) together with (6.5) yields 0 < a

2 < 4eps2 b2 and

ϱ = b
2 − a

2 > (1− 4eps2) b2 , so that eps ≤ 1
4 and r = ∆(m− a) ≤ m = (1 + 2eps) b2 give

r − ϱ < (2eps+ 4eps2)
b

2
< 2epsµ+

4eps2

1− 4eps2
ϱ ≤ 2eps(|µ|+ ϱ) ,

a contradiction to (6.1). Therefore ufp(µ) ̸= b/2, and (6.4) implies∣∣ b
2
− ufp(µ)

∣∣ ≥ epsufp(µ) and
∣∣a
2

∣∣ ≥ epsufp(µ) .(6.6)

Suppose ufp
(
a
2

)
≥ 2epsufp(µ). Then a

2 ∈ 2eps ufp
(
a
2

)
Z ⊆ 4eps2ufp(µ)Z by (2.6). If b

2 ≥ ufp(µ), then b
2 ∈

2epsufp(µ)Z ⊆ 4eps2ufp(µ)Z, and otherwise b
2 < ufp(µ) and therefore 0 ≤ a ≤ b give b

2 ∈ 2epsufp(a2)Z ⊆
4eps2ufp(µ)Z. In any case µ = a

2 + b
2 ∈ 4eps2ufp(µ)Z, contradicting (6.5). If ufp

(
a
2

)
≤ 1

2epsufp(µ), then∣∣a
2

∣∣ < epsufp(µ), a contradiction to (6.6).

FAST INTERVAL MATRIX MULTIPLICATION 25

It remains the case ufp
(
a
2

)
= epsufp(µ). This means a

2 ∈ 2epsufp
(
a
2

)
Z = 2eps2ufp(µ)Z, so that (6.5)

implies µ = (1 + 2eps2)ufp(µ). Moreover

eps ufp(µ) ≤
∣∣a
2

∣∣ < 2epsufp(µ)(6.7)

by (2.7), and (6.5) and (6.7) yield∣∣ b
2
− ufp(µ)

∣∣ = ∣∣µ− ufp(µ) +
a

2

∣∣ < (2eps2 + 2eps)ufp(µ) .

In view of (6.4) this leaves the possibilities b
2 ∈ {1− 2eps, 1− eps, 1+ 2eps} · ufp(µ), where the first implies

a
2 = µ− b

2 =
(
2eps2+2eps

)
ufp(µ) contradicting (6.7). Thus only the two floating-point neighbors of ufp(µ)

are left for b
2 , and a short computation shows r − ϱ ≤ 2eps(|µ|+ ϱ) in both cases. �

7. Conclusion. Several algorithms for interval matrix multiplication have been presented. The al-

gorithms based on midpoint-radius representation are of similar quality as the classical interval matrix

multiplication. However, the latter is very slow due to numerous switches of the rounding mode and lack of

compiler optimization. Moreover, the former allow the use of fast BLAS3 routines, sequential or parallel.

There are improvements in performance based on a priori estimation of the error of certain floating-point

matrix products. They reduce the computing time for point times interval matrix from 3 to 2, and the

product of two interval matrices from 4 to 3 matrix multiplications. Although we develop and analyze

an optimal conversion between infimum-supremum and midpoint-radius representation, we prefer a slightly

weaker but faster method.

Comparing algorithms for interval matrix multiplication directly seems to indicate that those with fewer

matrix multiplications are prone to overestimation, in particular for narrow input intervals. In a practical

application such as computing error bounds for the solution of a linear system, however, the difference is not

too large and often negligible.

Acknowledgement. My thanks to the anonymous referees. I am indebted in particular to one referee,

who gave very detailed and helpful advice changing the paper significantly.

REFERENCES

[1] ACRITH: IBM High-Accuracy Arithmetic Subroutine Library. IBM Deutschland GmbH, Schönaicher Strasse 220, D-71032

Böblingen, 1986. 3rd edition.

[2] ARITHMOS, Benutzerhandbuch, Siemens AG, Bibl.-Nr. U 2900-I-Z87-1 edition, 1986.

[3] J.J. Dongarra, J.J. Du Croz, I.S. Duff, and S.J. Hammarling. A set of level 3 Basic Linear Algebra Subprograms. ACM

Trans. Math. Software, 16:1–17, 1990.

[4] G.E. Forsythe. Pitfalls in computation, or why a math book isn’t enough. Am. Math. Mon. 77, pages 931–956, 1970.

[5] A. Frommer. Proving Conjectures by Use of Interval Arithmetic. In U. Kulisch et al., editor, Perspectives on enclosure

methods. SCAN 2000, GAMM-IMACS international symposium on scientific computing, computer arithmetic and

validated numerics, Univ. Karlsruhe, Germany, September 19-22, 2000, Wien, 2001. Springer.

[6] I. Gargantini and P. Henrici. Circular Arithmetic and the Determination of Polynomial Zeros. Numer. Math., 18:305–320,

1972.

[7] D. Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computaing Surveys,

23(1):5–47, 1991.

[8] K. Goto and R. Van De Geijn. High-performance implementation of the level-3 blas. ACM Trans. Math. Softw., 35:1–14,

2008.

[9] F. Goualard. How do you compute the midpoint of an interval? Technical report, CNRS, LINA, UMR 6241, Université

de Nantes, 2011.

[10] J.R. Hauser. Handling floating-point exceptions in numeric programs. ACM Trans. Program. Lang. Syst., 18(2):139–174,

1996.

[11] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM Publications, Philadelphia, 2nd edition, 2002.

[12] ANSI/IEEE 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. New York, 1985.

26 S. M. RUMP

[13] ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. New York, 2008.

[14] C. Jacobi, H.J. Oh, K.D. Tran, S.R. Cottier, B.W. Michael, H. Nishikawa, Y. Totsuka, T. Namatame, and N. Yano. The

vector floating-point unit in a synergistic processor element of a cell processor. In ARITH 2005: Proceedings of the

17th IEEE Symposium on Computer Arithmetic, pages 59–67, Washington, 2005.

[15] Christian Jacobi, Hwa-Joon Oh, Kevin D. Tran, Scott R. Cottier, Brad W. Michael, Hiroo Nishikawa, Yonetaro Totsuka,

Tatsuya Namatame, and Naoka Yano. The vector floating-point unit in a synergistic processor element of a Cell pro-

cessor. In ARITH ’05: Proceedings of the 17th IEEE Symposium on Computer Arithmetic, pages 59–67, Washington,

DC, USA, 2005. IEEE Computer Society.

[16] R.B. Kearfott, M. Dawande, K. Du, and C. Hu. Intlib: A portable Fortran-77 elementary function library. Interval

Comput., 3(5):96–105, 1992.

[17] R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC: A C++ Class Library for Extended Scientific

Computing. Springer, Berlin, 1993.

[18] O. Knüppel. PROFIL / BIAS — A Fast Interval Library. Computing, 53:277–287, 1994.

[19] O. Knüppel. PROFIL/BIAS and extensions, Version 2.0. Technical report, Inst. f. Informatik III, Technische Universität

Hamburg-Harburg, 1998.

[20] M. Malcolm. On accurate floating-point summation. Comm. ACM, 14(11):731–736, 1971.

[21] J. Markoff. Writing the Fastest Code, by Hand, for Fun: A Human Computer Keeps Speeding Up Chips . New York

Times, November 28, 2005.

[22] R.E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Computing. Dissertation, Stanford University,

1963.

[23] J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.

Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[24] M. T. Nakao. Solving nonlinear elliptic problems with result verification using an H−1type residual iteration. Computing,

pages 161–173, 1993.

[25] M.T. Nakao. A numerical approach to the proof of existence of solutions for elliptic problems. Japan J. Appl. Math.,

5(2):313–332, 1988.

[26] M.T. Nakao, K. Hashimoto, and Y. Watanabe. A numerical method to verify the invertibility of linear elliptic operators

with applications to nonlinear problems. Computing, 75:1–14, 2005.

[27] A. Neumaier. Vienna proposal for interval arithmetic. http://www.mat.univie.ac.at/ neum/papers.html.

[28] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1990.

[29] H.D. Nguyen and N. Revol. Accuracy issues in linear algebra using interval arithmetic. SCAN conference Lyon, 2010.

[30] S. Oishi and S.M. Rump. Fast verification of solutions of matrix equations. Numer. Math., 90(4):755–773, 2002.

[31] K. Ozaki, T. Ogita, S. M. Rump, and S. Oishi. Accurate matrix multiplication by using level 3 BLAS operation. In

Proceedings of the 2008 International Symposium on Nonlinear Theory and its Applications, NOLTA’08, Budapest,

Hungary, pages 508–511. IEICE, 2008.

[32] M. Plum. Numerical existence proofs and explicit bounds for solutions of nonlinear elliptic boundary value problems.

Computing, 49(1):25–44, 1992.

[33] M. Plum. Existence and Multiplicity Proofs for Semilinear Elliptic Boundary Value Problems by Computer Assistance.

DMV Jahresbericht, 110(1):19–54, 2008.

[34] S. Poljak and J. Rohn. Checking Robust Nonsingularity Is NP-Hard. Math. of Control, Signals, and Systems 6, pages

1–9, 1993.

[35] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.

[36] S.M. Rump. Fast and parallel interval arithmetic. BIT Numerical Mathematics, 39(3):539–560, 1999.

[37] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages

77–104. Kluwer Academic Publishers, Dordrecht, 1999.

[38] S.M. Rump. Inversion of extremely ill-conditioned matrices in floating-point. Japan J. Indust. Appl. Math. (JJIAM),

26:1–29, 2009.

[39] S.M. Rump. Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19:287–449, 2010.

[40] S.M. Rump. Error estimation of floating-point summation and dot product. to appear in BIT, 2011.

[41] S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding. SIAM J. Sci. Comput.,

31(1):189–224, 2008.

[42] P.H. Sterbenz. Floating-point computation. Prentice Hall, Englewood Cliffs, NJ, 1974.

[43] T. Sunaga. Geometry of Numerals. Master’s thesis, University of Tokyo, February 1956.

[44] A. Takayasu, S. Oishi, and T. Kubo. Guaranteed error estimate for solutions to two-point boundary value problem.

In Proceedings of the International Symposium on Nonlinear Theory and its Applications (NOLTA2009), Sapporo,

Japan, pages 214–217, 2009.

[45] Y. Watanabe. A computer-assisted proof for the Kolmogorov flows of incompressible viscous fluid. Journal of Computa-

tional and Applied Mathematics, 223:953–966, 2009.

[46] Y. Watanabe, M. Plum, and M.T. Nakao. A computer-assisted instability proof for the Orr-Sommerfeld problem with

FAST INTERVAL MATRIX MULTIPLICATION 27

Poiseuille flow. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 89(1):5–18, 2009.

