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Abstract

This paper re-interprets the concept of unbounded intervals in terms
of over�ow. All of the �mathematical intervals�at Level 1 are de�ned to
be closed and bounded; and the concept of over�ow is then introduced in a
new �intermediate�level between Level 1 and Level 2. For the arithmetic
operations in particular, this new structural interpretation is functionally
equivalent to the current model of unbounded intervals. The midpoint
of an unbounded interval is unde�ned, however, and therefore leads to
interval algorithms that generate NaNs; but midpoint can be de�ned as
a real number for over�ow, thereby providing algorithms that generate
useful results.

1 Introduction

The following is from [1]:

A closed interval is an interval that includes all of its limit points.
If the endpoints of the interval are �nite numbers a and b, then the
interval fx : a � x � bg is denoted [a; b]. If one of the endpoints is
�1, then the interval still contains all of its limit points (although
not all of its endpoints), so [a;1) and (�1; b] are also closed inter-
vals, as is the interval (�1;1).

If R is the set of real numbers and

IR � f[a; b] : a; b 2 R ^ a � bg

is the classic set of nonempty, closed and bounded intervals, then by P1788
conventions IR is the extension of IR to the set of closed intervals [1], including
the empty set. Intervals of the form [a;+1], [�1; b] and [�1;1] are therefore
understood to be closed, unbounded intervals. Note the use of square brackets,
i. e., in all cases in�nity is not considered to be an element of any interval. The
singletons [�1;�1] and [+1;+1] are by de�nition invalid constructions.
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Arithmetic operations [7] on the endpoints of unbounded intervals follow
conventions of real analysis and IEEE 754 arithmetic such as

(�1) + (�1) = �1
(+1) + (+1) = +1
(�1) � (�1) = +1
(�1) � (�1) = �1

8x 2 R; x=(�1) = 0.

The operations (�1)+(+1) and (+1)+(�1) on the endpoints of unbounded
intervals [5] are exceptional conditions, as in IEEE 754 arithmetic. Presumably,
a future motion for inner multiplication and division (or Kaucher arithmetic)
would likewise de�ne operations involving ratios of in�nities on the endpoints of
unbounded intervals as exceptional conditions, which would also be consistent
with IEEE 754 arithmetic.
One point of deviation from IEEE 754 is that [7] de�nes 0 � (�1) = 0

and (�1) � 0 = 0. These operations are exceptional conditions in IEEE 754
arithmetic, but in the context of P1788 the in�nity is understood to be the
accumulation point of an operand representing a set of real numbers in an
unbounded interval arithmetic operation, hence the non-exceptional result.
The purpose of this paper is not to overthrow any of these conventions or to

argue they are invalid (we believe they are correct); the purpose is to re-interpret
the concept of unbounded intervals in terms of over�ow. This is accomplished by
de�ning the �mathematical intervals�at Level 1 as IR, and then introducing the
concept of over�ow in a new �intermediate�level between Level 1 and Level 2.
For the arithmetic operations in particular, this new structural interpretation
is functionally equivalent to the current model of unbounded intervals. The
midpoint of an unbounded interval is unde�ned, however, and leads to interval
algorithms that generate NaNs; but midpoint can be de�ned as a real number
for over�ow, thereby providing algorithms that generate useful results.

2 Level Structure

In this paper, the Level 1 set of �mathematical intervals� is de�ned as IR.
This gives the classic Fundamental Theorem of Interval Arithmetic (FTIA) of
Ramon Moore, where the natural interval extension of a real function is de�ned
only if the interval input is a nonempty subset of the natural domain of the
real function; and any result satisfying the theorem is a nonempty, closed and
bounded interval. The in�mum, supremum, midpoint and radius of a Level 1
interval is always de�ned and is always a real number.
Level 2 is mostly unchanged in this paper. Each Level 2 interval format

is associated with some �nite subset of the reals. The number of elements in
the subset is �nite, and each element is a real number (the issue of in�nity
vs. over�ow as members of this set will be discussed later). The maximal real
element of the �nite set is Fmax.
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The concept of over�ow is introduced in a new �intermediate�level between
Level 1 and Level 2. We call this Level 1a. In the current P1788 model, this is
where arithmetic in IR would otherwise be extended to the unbounded intervals
and the empty set of IR. Instead of doing this, however, we re-interpret the
arithmetic of unbounded intervals in terms of over�ow.

2.1 Level 1: Mathematical Intervals

The �mathematical intervals�are de�ned as the set IR of nonempty, closed and
bounded intervals. If f(x) : Rn ! R is a real function, Df � Rn is the natural
domain of f , and X 2 IRn is a nonempty subset of Df , then the interval hull
of the set

ff(x) : x 2 Xg (1)

is simply the minimum and maximum of f over the interval domain X; so we
may de�ne the natural interval extension

f(X) � [min
x2X

f(x);max
x2X

f(x)] (2)

as a function f(X) : IRn ! IR. This gives the classic Fundamental Theorem of
Interval Arithmetic (FTIA) of Ramon Moore, where F (X) 2 IR is any interval
that satis�es

f(X) � F (X), (8x 2 X)(9y 2 F (X)) : y = f(x). (3)

If [a; b] 2 IR is a mathematical interval, then

inf([a; b]) � a

sup([a; b]) � b

mid([a; b]) � (a+ b)=2

rad([a; b]) � (b� a)=2

is always de�ned and is always a real number.

2.2 Level 1a: Over�ow

We now introduce the concept of over�ow in a new �intermediate�level between
Level 1 and Level 2. We call this Level 1a. With respect to the current P1788
model, Level 1a is where arithmetic in IR would be extended to the unbounded
intervals and the empty set of IR. Instead of doing this, however, we re-interpret
the arithmetic of unbounded intervals in terms of over�ow.
Level 1a may be thought of as an abstract or �virtual�parameterization of

Level 2. We are at Level 1 in the sense we are still working on the real number
line with an in�nite amount of precision, however we also introduce an over�ow
threshold h onto the real number line. Any real number x such that x > h or
x < �h is considered �over�ow�at Level 1a. In this paper, we use +! and �!,
respectively, as symbols for positive and negative over�ow.
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The threshold value h is a virtual parameterization of Fmax. If there will
be multiple Level 2 formats, there may be multiple virtual parameterizations
h0; h1; : : : ; hn at Level 1a for each Fmax at Level 2. This is discussed later in
the paper. For now we just assume there is one Level 2 format and hence one
virtual parameter h at Level 1a.
FTIA (3) can be extended into IR by re-de�ning the set (1) as

ff(x) : x 2 Xfg, with Xf = X \Df (4)

for any X 2 IRn. Similarly, (2) can be re-de�ned as

f(X) � [ inf
x2Xf

f(x); sup
x2Xf

f(x)]. (5)

Note that (4) and (5) are the current Level 1 de�nitions given in the draft
standard text [10].

Exercise 1 What exactly is over�ow? Let�s build intuition and start with some-
thing familiar. With (4) and (5) we may consider a function like g(x) = 1=x
on the interval domain X = [0; 1]. The natural interval extension in this case is
the closed, unbounded interval [1;+1]. Let the over�ow threshold be h = 100.
Note that the interval

[1;+1] � fx : x � 1g

contains real numbers x such that x > 100. In Level 1a the interval [1;+1] is
therefore considered to �over�ow� into a family of intervals

[1;+!] � f[1; �] : � � 100g.

For the sake of intuition, there are a few important facts to notice from the
example in Exercise 1:

� Note that �over�ow�is not an interval, it is a family of intervals.

� Note that due to the over�ow threshold h = 100 the interval [1; 100] is the
least of all intervals in the family of intervals; it is also the only interval
in the family of intervals that is a subset of [�h; h].

� Note that all intervals in the family of intervals are nonempty, closed and
bounded �mathematical intervals,�i. e., they are all elements of IR.

� Note that the union of all intervals in the family of intervals is the closed,
unbounded interval [1;+1].

These facts illustrate over�ow as a re-interpretation of unbounded intervals,
since the mapping of an unbounded interval into a family of intervals parame-
terized by some over�ow threshold h is always well-de�ned. Similarly, the union
of all intervals in this family of intervals is always an unbounded interval.
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De�nition 1 (Over�ow Family) If X = [a; b] is a nonempty element of IR
and h 2 R is an over�ow threshold such that H = [�h; h], then the over�ow
family of X is de�ned


(X) �

8>>>>>><>>>>>>:

[�!;�h] if X � H
[�!; b] if X � H ^X < H
fXg if X � H
[�!;+!] if H � X, i. e., H is interior to X
[a;+!] if H � X ^H < X
[h;+!] if H � X

(6)

where any over�ow family of the form [�!; v], [u;+!] or [�!;+!] with u; v 2 H
is de�ned

[�!; v] � f[��; v] : � 2 R ^ � � hg, (7)

[u;+!] � f[u; �] : � 2 R ^ � � hg, (8)

[�!;+!] � f[��; �] : � 2 R ^ � � hg. (9)

The over�ow family of the empty set, i. e., 
(?), is the singleton f?g.

Corollary 1 If for any X 2 IR we de�ne �(Z) as the union of all intervals in
the over�ow family Z = 
(X), then

�(
(X)) : IR! IR. (10)

Corollary 2 The mapping (10) has the property

X � �(
(X)). (11)

Proposition 1 For any X 2 IRn, F (X) 2 IR and natural interval extension
f(X) as de�ned in (5),

f(X) � F (�(
(X))), (8x 2 X)(9y 2 F (�(
(X)))) : y = f(x).

Proof. If f(X) � F (X), then

F (X) � F (�(
(X)))) f(X) � F (�(
(X))).

Proposition 2 For any X 2 IRn, F (X) 2 IR and natural interval extension
f(X) as de�ned in (5),

f(X) � �(
(F (X))), (8x 2 X)(9y 2 �(
(F (X)))) : y = f(x).

Proof. If f(X) � F (X), then

F (X) � �(
(F (X)))) f(X) � �(
(F (X))).
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Theorem 1 (Over�ow Arithmetic) If F (X) is an interval extension of a
real function over the domain X 2 IRn, then for any over�ow family Z we may
safely re-interpret F (X) as


(F (�(Z))).

Exercise 2 Consider the real function

f(x) = 1 + x2(1 + sin(x))

and suppose we want proof of the non-existence of any solution f(x) = 0 on the
domain of the over�ow family Z = [�!;+!]. By Theorem 1 we have


(f(�(Z))) = 
(f([�1;+1]))
= 
([1;+1])
= [1;+!].

Zero is not an element of any interval in the over�ow family [1;+!], nor is it
an element of the unbounded interval �([1;+!]) = [1;+1] which represents the
union of all intervals in the over�ow family. Under either interpretation, it is
proof of non-existence of the solution.

2.2.1 Multiple Parameterizations

If there will be multiple Level 2 formats, there may be multiple virtual parame-
terizations h0; h1; : : : ; hn at Level 1a for each Fmax at Level 2. We can similarly
de�ne respective mappings 
0;
1; : : : ;
n. Conversion, for example, between
parameterizations h0 and h1 is then easily de�ned, i. e., if X0 = 
0(X), then
X1 = 
1(�(X0)).

2.3 Level 2: Interval Datums

Each Level 2 interval format is associated with some �nite subset of the reals.
The number of elements in the subset is �nite, and each element is a real number.
The set is then augmented by the two elements +! and �!, respectively, as
symbols for positive and negative over�ow. The maximal real element of the
augmented set is Fmax, and this is the concrete value assigned to the virtual
over�ow threshold h in the Level 1a parameterization of the Level 2 format.

3 Rationale

This section illustrates how over�ow makes available new opportunities to clarify
or ��x�some aspects of the existing P1788 model (and perhaps even IEEE 754)
that are arguably ambiguous, inconsistent or correct but otherwise somehow
unexpected or problematic.
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3.1 IEEE 754 and P1788 Arithmetic Operations

For the interval arithmetic operations in particular and FTIA in general, over-
�ow is functionally equivalent to the current model of unbounded intervals.
Assuming that IEEE 754 in�nities are used at Level 3 to represent over�ow, all
of the arithmetic operations in [7] on the endpoints of unbounded intervals are
unchanged when re-interpreted as over�ow, i. e.,

(�!) + (�!) = �!
(+!) + (+!) = +!

(�!) � (�!) = +!

(�!) � (�!) = �!
8x 2 R; x=(�!) = 0.

The operations (�!) + (+!) and (+!) + (�!) in Kaucher arithmetic would
represent exceptional conditions, as would endpoint operations involving ratios
of over�ow; all of this is consistent with IEEE 754 arithmetic if the in�nities are
interpreted as over�ow.
Note that when the unbounded intervals are re-interpreted as over�ow, we

still have 0 � (�!) = 0 and (�!) � 0 = 0, as in [7].
One historical issue is that when the IEEE 754 standard was created, it over-

loaded the concept of in�nity and over�ow. The a¢ ne in�nities +1 and �1
are de�ned as true in�nities, and arithmetic operations are de�ned accordingly.
This is why, for example, 0 � (�1) and (�1) � 0 are exceptional operations in
IEEE 754 arithmetic. But +1 and �1 may also be the result of certain op-
erations that over�owed. In this case, the in�nite result only represents a very
large but �nite and unrepresentable �oating-point number. This issue has been
and continues to be a point of controversy. With the bene�t of hindsight, if the
original IEEE 754 level structure had introduced the concept of over�ow into a
Level 1a similar to the one described in this paper it may have been possible to
avoid this problem.
In the event some future revision of IEEE 754 might introduce the concept

of over�ow so that +1 and �1 are di¤erentiated from +! and �!, and if

0 � (�1) = NaN

(�1) � 0 = NaN

0 � (�!) = 0

(�!) � 0 = 0

the interval arithmetic would be compatible. Vendors could use +! and �! at
Level 3 to represent over�ow. Without such a future revision of IEEE 754, of
course, vendors can use +1 and �1 at Level 3 to represent over�ow, taking
into consideration the necessary di¤erences mentioned above and in [7].
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M([a; b]) b = �! b 2 H b = +!
a = �! �! �h 0
a 2 H �h M(a; b) +h
a = +! 0 +h +!

Table 1: For any over�ow family [a; b] parameterized by an over�ow threshold
h 2 R, the bisection method M([a; b]) may be de�ned at Level 1a as shown in
this table. H = [�h; h], andM(a; b) is a real number computed by the bisection
method M as a function of a; b 2 H.

3.2 Mean, Median and Other Bisection Methods

Interval bisection is fundamental to interval algorithms. There are many ways
to bisect an interval, but any bisection method M must compute a point p as a
function of an input interval [a; b] such that p 2 [a; b] may form the two intervals
[a; p] and [p; b].
Computing the midpoint of [a; b] is perhaps the simplest bisection method,

since it is simply the arithmetic mean of the interval endpoints. One might also
consider the geometric mean or even more sophisticated methods. In [11], John
Pryce de�nes, e. g.,

smedian2([a; b]) = sinh

�
asinh(a) + asinh(b)

2

�
. (12)

The midpoint of an unbounded interval is unde�ned. This fact has prompted
several prominent members of P1788 to suggest the midpoint of an unbounded
interval should be unde�ned at Level 2, as well, and therefore return NaN. We
agree with this position. In fact, we believe the more general bisection methods
described above are unde�ned for an unbounded interval, too (even at Level 2),
and should similarly return NaN.
However, this means many interval algorithms that use bisection methods

are unde�ned at both Level 1 and Level 2 in the current model. For example,
how may a branch-and-bound algorithm that bisects on the midpoint even begin
to proceed (at Level 1 or Level 2) if the user provides X = [1;+1] as input?
In this paper,

Z = 
(X) = 
([1;+1]) = [1;+!]

is an over�ow family. This is a di¤erent mathematical object than an unbounded
interval, so we may de�ne the bisection point of [1;+!] as a real number. Table 1
shows one way this may be accomplished.
Now all the interval algorithms that are unde�ned for unbounded intervals in

the current model are de�ned for over�ow in the new model. By re-interpreting
unbounded intervals as over�ow, such interval algorithms may return useful
results instead of NaNs.
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3.2.1 Is Over�ow Really a Novel Concept?

Some discussion in P1788 has objected to over�ow on the premise it is a new
idea that is not well understood. But is that really true?
All vendors and implementers of interval libraries have at some time been

faced with the problem of trying to de�ne a bisection method (arithmetic mean,
geometric mean, median, etc.) for an unbounded interval such as [1;+1]. How
has this been dealt with in the past?
Such bisection methods are invariably unde�ned at Level 1, but special cases

and exceptional conditions at Level 2 are typically handled along the lines of
the rules illustrated for over�ow in Table 1. A case in point is the smedian2
bisection method found in [11]. This method is unde�ned at Level 1 when the
input is unbounded, but in the source code of the reference implementation, the
author leaves the following comment about the implementation at Level 2:

% (C) John Pryce 2012. Thanks to Dan Zuras for his analysis.
% M = SMEDIAN2(A,B) computes sinh(0.5*(asinh(a)+asinh(b)))
% - The case when either of A,B is infinite is treated specially,
% as shown in this table, where H denotes the largest
% representable real, REALMAX:
% \ b=
% a= \ -inf finite +inf |
% -------+--------+--------+--------+
% -inf | -inf -H 0 |
% finite | -H n/a +H |
% +inf | 0 +H +inf |
% -------+--------+--------+--------+

In this comment, we see that the Level 2 de�nition depends on the notion
of �the largest representable real, REALMAX.�The table that follows in the
source code comment is practically identical to Table 1.
One must consider the logical implications. If one postulates the arithmetic

mean (midpoint) of an unbounded interval is unde�ned at Level 2, it follows
that the geometric mean of an unbounded interval should also be unde�ned at
Level 2. Since smedian2 is a variant of geometric mean, why is smedian2 de�ned
at Level 2 for an unbounded interval but geometric and arithmetic means are
not? In our view, this represents a logical contradiction and illustrates the perils
of ad-hoc de�nitions and special-case reasoning.
On the other hand, this also illustrates why we believe that over�ow is not

a new concept. One simply must be able to de�ne bisection methods in these
cases, and over�ow provides the necessary framework to do so without ending
up in the snare of logical contradictions just mentioned. This is due to the fact
that an over�ow family is a di¤erent mathematical object than an unbounded
interval because an over�ow family is parameterized by a threshold representing
�the largest representable real, REALMAX�but an unbounded interval is not.
We can therefore de�ne bisection methods on over�ow, and this avoids the

contradiction that the same methods are also unde�ned for unbounded intervals.
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Furthermore, we can de�ne the bisection methods at both Level 1a as well as
Level 2 for over�ow, an accomplishment that simply is not at all possible in the
current P1788 model.

3.2.2 Interval Newton

Perhaps one of the most fundamental and important algorithms is the extended
Interval Newton. At the heart of the algorithm is the Newton operator

N(X) � x� f(x)

f 0(X)
, with x 2 X. (13)

But (13) is a mathematical de�nition. To be an algorithm, an exact method
of choosing x 2 X must be speci�ed. A practical, simple and easy choice that
works well for a large class of problems is to choose the midpoint of X, i. e.,

Nmid(X) � mid(X)�
f(mid(X))

f 0(X)
. (14)

Now (14) is an algorithm. But users may be surprised to learn that if X is an
unbounded interval, (14) is unde�ned and may generate NaNs.
In the model presented in this paper, bisection on the midpoint in (14)

may be de�ned for over�ow according to Table 1. Under this de�nition, useful
results are obtained for the function f(x) = x2(2x � 3) on the input domain
X0 = [1:1;+!]:

Xn mid(Xn) N(Xn)
================= ======= =================
[ 1.1, 1.#INF] 1.7977e+308 [-1.#INF,1.7977e+308]
[ 1.1,1.7977e+308] 8.9885e+307 [-1.#INF,8.9885e+307]
[ 1.1,8.9885e+307] 4.4942e+307 [-1.#INF,4.4942e+307]
[ 1.1,4.4942e+307] 2.2471e+307 [-1.#INF,2.2471e+307]
...
[ 1.1, 10.096] 5.5981 [-383.58, 5.1319]
[ 1.1, 5.1319] 3.116 [-44.429, 2.8693]
[ 1.1, 2.8693] 1.9847 [-3.8003, 1.866]
[ 1.1, 1.866] 1.483 [ 1.4907, 1.5962]
[ 1.4907, 1.5962] 1.5435 [ 1.4963, 1.5072]
[ 1.4963, 1.5072] 1.5017 [ 1.5, 1.5]

Solution: [1.49998,1.50003]

Total iterations: 990

Other bisection methods such as geometric mean, smedian2, etc. may simi-
larly be used to select x 2 X in (13). When provided with an over�ow family as
input, such interval algorithms may also generate useful results, as opposed to
NaNs. For example, if the algorithm uses smedian2 in accordance with Table 1
as the bisection method for the over�ow input, the solution is found in only 14
total iterations.
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3.2.3 Centered Forms

Similar situations exist when working with centered forms. For example,

F (X) � f(c) + (X � c)f 0(X), with c 2 X (15)

is a mathematical de�nition of the mean-value form of F (X); and the method
of choosing c 2 X is typically the midpoint of X, i. e.,

Fmid(X) � f(mid(X)) + (X �mid(X))f 0(X). (16)

As in the case of the Newton operator, (16) is unde�ned in the current P1788
model when X is an unbounded interval, and it may therefore generate NaNs.
The same for various forms of the Krawczyk operator and related functions
described in [13], including the Baumann theorem. With over�ow, these forms
and functions may be de�ned.

3.2.4 Branch and Bound

In branch-and-bound, an initial interval domain X0 of a function f is speci�ed
by a user and then recursively bisected into

X0 � X1 � � � � Xn

until some Xi or f(Xi) satis�es an acceptance, deletion or termination criteria.
Bisecting at the midpoint is very common and works extremely well for a large
class of interval problems. Users often want to specify the initial interval domain
to be as wide as possible, and a convenient way to do this is to specify X0 as an
unbounded interval. However, such an algorithm is not de�ned in the current
P1788 model and will generate NaNs.
Useful results can be obtained by re-interpreting the unbounded intervals

as over�ow. For example, a simple midpoint bisection algorithm performed on
the function f(x) = sin(1=x) on the input domain X0 = [0:1;+!] �nds all four
solutions (including the solution at in�nity):

Xi mid(Xi) F(Xi)
================= ======= =================
[1.7977e+308, 1.#INF] 1.7977e+308 [ 0,5.5627e-309]
[0.31094,0.31875] 0.31484 [-0.074419,0.0043377]
[0.15469, 0.1625] 0.15859 [-0.12898,0.18047]
[ 0.1,0.10781] 0.10391 [-0.54402,0.14886]

Total bisections: 1038

If the algorithm uses smedian2 on the over�ow input in accordance with
Table 1 as the bisection method, all four solutions are found in only 26 total
bisections. We notice that neither the midpoint nor smedian2 bisection methods
are de�ned in the current model for the unbounded input X0 = [0:1;+1] and
that both methods in this case would simply generate NaNs.
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3.2.5 Minimal Standards: An Analogy

In computer science, an important utility that digital computer systems should
provide is the ability to generate random numbers. Over the course of time, it
has become widely known that good random number generators are hard to �nd.
This was the premise of the famous publication [9], which therefore argued for
a �minimal standard.�This became known as the Park-Miller Pseudo-Random
Number Generator (PM-PRNG).
The PM-PRNG is very simple and easy to implement, and it is known to

have �good�statistical properties. For many basic or simple applications it is
entirely suitable. Experts and specialists, of course, may choose random number
generators that are known to have �better�properties (such as DRAND48 or
the Mersenne Twister). But for non-experts and non-specialists, the PM-PRNG
minimal standard provides users with a random number generator that is known
to provide useful and satisfactory results for most non-specialty applications.
We see this as an analogy to bisection methods in interval analysis. There

are many ways to bisect an interval, and not all bisection methods are equally
suited to the certain or special needs of various interval algorithms. However,
we believe there is a need for a �minimal standard�when it comes to interval
bisection methods. For us, this is the midpoint bisection method. We there-
fore believe P1788 should, at a minimum, standardize a midpoint operation on
over�ow.

3.3 Comparison Operations

It may seem obvious to most people that [2; 100] is not interior to [1; 100] because
both intervals share a common upper endpoint of 100. But even experts are
sometimes surprised to learn that [2;+1] is interior to [1;+1].
One might call this �astonishing.�But it is the mathematical truth; at least

for unbounded intervals. In [12], if A and B are nonempty elements of IR, then
the boolean function isInterior(A;B) is de�ned

((8a 2 A)(9b 2 B) : b < a) ^ ((8a 2 A)(9b 2 B) : a < b) (17)

and we have

isInterior(A;B), (inf(B) <0 inf(A)) ^ (sup(A) <0 sup(B)) (18)

where <0 is the same as < except that �1 <0 �1 and +1 <0 +1 are true.
For (17) and (18), it is easy to see that

isInterior([2; 100]; [1; 100]) = false,

isInterior([2;+1]; [1;+1]) = true.

The implementation of isInterior necessarily becomes more complex to accom-
modate the special cases of <0 required for unbounded intervals.
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All of the de�nitions in [12] are compatible with over�ow and require no
changes. If A and B are over�ow families instead of unbounded intervals, we
may simply de�ne any comparison operation � to be

�(A) ��(B). (19)

For example,

isInterior([2;+!]; [1;+!]) = isInterior(�([2;+!]);�([1;+!]))

= isInterior([2;+1]; [1;+1])
= true.

Re-interpreting unbounded intervals as over�ow also provides new opportu-
nities to consider that are currently unavailable. For any over�ow family Z we
could de�ne �(Z) to be the least interval (by containment order) of all intervals
in the over�ow family Z; then any comparison operation � could be de�ned

�(A) � �(B). (20)

The isInterior operator would then give

isInterior([2;+!]; [1;+!]) = isInterior(�([2;+!]);�([1;+!]))

= isInterior([2; h]; [1; h])

= false.

In this case an implementation could use the very simple and e¢ cient program-
ming formulas originally presented in [8], so long as the in�nities in those for-
mulas were interpreted as over�ow. In other words, the special cases associated
with <0 in [12] would no longer be needed and < could be used instead.
Another possibility for comparison operations on over�ow might be to con-

sider multi-valued logic [2]. We prefer boolean comparison operations, however,
so have not spent time looking seriously at this option.

3.4 Kaucher Arithmetic

The beginning of Kaucher arithmetic comes from embedding the commutative
cancellative monoid (IR;+) into the abelian group (IR;+) as described in [4].
The system (IR;+) is not cancellative due to the unbounded intervals and empty
set, and this makes it an unsuitable starting point.
In this paper, the concept of unbounded intervals and their reinterpreta-

tion as over�ow isn�t introduced until Level 1a. Kaucher arithmetic can then
be developed at Level 1 in a manner compatible to P1788, and extensions of
Kaucher arithmetic to unbounded intervals and over�ow families could possibly
be introduced at Level 1a, etc.

Remark 1 Even the �cancel minus�or �Hukuhara di¤erence� in section 5.4.5
of the current draft text requires cancellation, and this is why the operation is
not de�ned for unbounded intervals.
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We believe the classic set of nonempty, closed and bounded intervals is a very
special set of intervals that deserves its own level in the standard. The Level 1
presented in this paper represents a common intersection between all of the
main branches of interval arithmetic, including the classical interval arithmetic
of Ramon Moore, the generalized interval arithmetic of Edgar Kaucher [6], and
the modal interval analysis of E. Gardenes and the SIGLA/X group [3].
Aside from the other unrelated issues of over�ow and bisection methods, we

therefore believe the level structure presented in this paper provides a framework
for an interval standard that will better endure the test of time.

4 Conclusion

This paper re-interprets unbounded intervals as over�ow. A closed, unbounded
interval has a well-de�ned mapping into a family of intervals parameterized by
an over�ow threshold h 2 R, and the union of all intervals in this family is
a closed, unbounded interval. This makes it easy to think about unbounded
intervals in terms of over�ow and vice-versa.
In practice, over�ow is functionally equivalent to unbounded intervals in

regards to the arithmetic operations and interval functions. Although some
mathematical formalities are di¤erent at the upper levels, the implementation of
over�ow at Level 3 requires no changes to the existing operations on unbounded
intervals. In this regard, it is largely a matter of semantics. The midpoint of an
unbounded interval is unde�ned, but the midpoint of an over�ow family may
be de�ned as a real number. The same is true for other bisection methods such
as geometric mean or [11].
Aside from the unrelated issue of over�ow, a Level 1 that is de�ned to be

restricted to the nonempty, closed and bounded intervals represents a common
point of intersection between all of the main branches of interval arithmetic. We
therefore believe the level structure presented in this paper provides a framework
for an interval standard that will better endure the test of time.

References

[1] http://mathworld.wolfram.com/ClosedInterval.html

[2] Bronnimann, H., et. al., �Bool_set: multi-valued logic,�June 21, 2006
http://www-sop.inria.fr/members/Sylvain.Pion/cxx/bool_set/bool_set_N2046.pdf

[3] Gardenes, E. et. al., �Modal Intervals,�Reliable Computing 7.2, 2001, pp.
77-111.

[4] Hayes, N., �Thoughts on Notations,�E-mail to P1788, April 21, 2012
http://grouper.ieee.org/groups/1788/email/msg05153.html

[5] Hayes, N., S. Markov, and N. Dimitrova, �Inner addition and subtraction,�
P1788 Motion 12, March 10, 2010.

14



[6] Kaucher, E., �Interval Analysis in the Extended Interval Space IR,�Com-
puting, Suppl. 2, 1980, pp. 33-49.

[7] Kulisch, U., �Arithmetic operations for intervals,�P1788 Motion 5.02, July
22, 2009.

[8] Kulisch, U., �Comparison relations,�P1788 Motion 13.04, August 26, 2010.

[9] Park, S. and K. Miller, �Random number generators: good ones are hard
to �nd,�Communications of the ACM, Volume 31, Issue 10, Oct. 1988, pp.
1192-1201.

[10] Pryce, J., �Revised (V4.4) Level 1 text,�P1788 Motion 31, February 15,
2012.

[11] Pryce, J., �I vote NO on midpoint,�E-mail to P1788, April 6, 2012
http://grouper.ieee.org/groups/1788/email/msg04979.html

[12] Pryce, J., �Proposed revision to Level 1 comparisons,� E-mail to P1788,
April 7, 2012
http://grouper.ieee.org/groups/1788/email/msg04981.html

[13] Shary, P., �Krawczyk operator revised,�Interval Mathematics and Interval
Constraint Programming, 2004, pp. 307-313.

15


