Let's denote the arithmetic for closed real intervals by \mathbb{I} and that for connected real intervals by \mathbb{J} . Further let $\mathbf{a} = [a_1, a_2]$ and $\mathbf{b} = [b_1, b_2]$ be two floating-point intervals of \mathbb{I} and \circ an operation $\circ \in \{+, -, \cdot, /\}$. Then the lower bound of an interval operation $\mathbf{a} \circ \mathbf{b}$ is computed by $\nabla (a_i \circ b_j)$ and the upper bound by $\Delta (a_\mu \circ b_\nu)$ where the i, j, μ, ν are to be selected by the usual formulas for interval operations.

In general the results $a_i \circ b_j$ and $a_\mu \circ b_\nu$ will not be floating-point numbers so that the roundings have to be applied. Then arithmetic in \mathbb{I} delivers the result $I = [\nabla (a_i \circ b_j), \triangle (a_\mu \circ b_\nu)]$ while arithmetic in \mathbb{I} delivers $J = (\nabla (a_i \circ b_j), \triangle (a_\mu \circ b_\nu))$ and we have $J \subset I$.

More drastic examples can be given in case of reasonable fused operations. Consider, for instance, two interval matrices. In $\mathbb J$ the dot products are computed exactly with only one rounding at the end of the accumulation while in $\mathbb J$ a rounding is applied after each addition and each multiplication in the dot products. In addition to the difference in accuracy there is a difference in computing speed. For details see section 8.6.2 in my book $Computer\ Arithmetic\ and\ Validity$. The unit discussed there was built in 1993/94. The book was on the market before IEEE P1788 was founded.