
DR
AF
T
8.2

Chapter 1
P1788/D8.2, November 28, 2013

Draft Standard For Interval Arithmetic §6.1

(d) Not every interval encoding necessarily encodes an interval object, but when it does, that
object is unique. Each interval object has at least one encoding and might have more than
one.

[Note. Items (c) and (d) are standard and necessary properties of representations. By contrast, the
properties (a) and (b) of the maps from Level 1 to Level 2, and back, are fundamental design decisions
of the standard.]

6. Expressions and the functions they define

6.1. Definitions. An expression is some symbolic form that can be used to define a function—
in general not a static object within program code, but derived dynamically from a particular
program execution. Expressions are central to interval computation, because the Fundamental
Theorem of Interval Arithmetic (FTIA) is about interpreting an expression in different ways:

(i) as defining a mathematical real point function f ;
(ii) as defining various (depending on the finite precision interval types used) interval functions

that give proven enclosures for the range of f over an input box x;
(iii) as defining corresponding decorated interval functions that can give the stronger conclusion

that f is everywhere defined, or everywhere continuous, on x—enabling, for example, an
automatic check of the hypotheses of the Brouwer Fixed Point Theorem.

The standard specifies behavior, at the individual operation level, that enables such conclusions,
whether or not the notion “expression” exists in a programming language.

A formal expression defines a relation between certain mathematical variables—the inputs—
and others—the outputs—via the application of named operations. It is by definition an acyclic
(having an acyclic graph, see below) finite set of dependences between mathematical variables,
defined by equations

v = ϕ(u1, . . . , uk), (k ≥ 0 being the arity of ϕ) (1)

where v and the ui come from a set X of variable-symbols; ϕ comes from a set F of formal library
operations; and distinct equations have distinct v’s—the single assignment property.

An arithmetic operation in a flavor is an operation whose primary interpretation is as a
real-valued function of real variables (a point function), and which also admits at least one interval
extension and decorated interval extension of the point function, where the notion of extension
is flavor-defined—see §10.4.3, 11.6 for the meaning in the set-based flavor. These are a point, an
interval and a decorated interval version of the operation, respectively. An arithmetic expression
is a formal expression, all of whose operations are arithmetic operations. Evaluating it using these
three versions of its operations in turn, with appropriate inputs, gives the interpretations (i) to
(iii) above, to which an FTIA appropriate to the flavor can be applied.

Other, nonarithmetic, expressions do not allow these three interpretations, e.g., the expression
mid(intersection(x,y)) in this standard can only mean a function with two interval inputs and
a numeric output.

Three descriptions of an expression are outlined here. To apply the FTIA, it suffices to consider
expressions that are scalar, with a single output.

(a) Drawing an edge from each ui to v for each dependence-equation (1) defines the computational
graph G—Figure 6.1(a)—a directed graph over the node set X . The dependences define an
expression if and only if G is acyclic. There is then a nonempty set of output nodes having no
outgoing edge, and a possibly empty set of input nodes having no incoming edge.

(b) Since G is acyclic, the equations can be ordered so that each one only depends on already
known (input, or previously computed) values, thus representing the expression as a code
list—Figure 6.1(b). In the notation of A. Griewank [2], the inputs are written v1−n, . . . , v0

where n ≥ 0, conventionally given the aliases x1, . . . , xn, so xi is the same as vi−n. The
operations are

vr = ϕr(ur,1, . . . , ur,kr), (r = 1, . . . ,m),

where ϕr ∈ F with arity kr, and each ur,i is a known vj , that is j = j(r, i) < r. (Constants,
which are operations of arity 0, may be referred to directly instead of assigned to a vj .) Without
loss, the outputs can be placed last so if there are p of them they are vm−p+1, . . . , vm, aliased to

14 November 28, 2013

DR
AF
T
8.2

Chapter 1
P1788/D8.2, November 28, 2013

Draft Standard For Interval Arithmetic §6.2

 sqr 1

 add

 sqrt

 div

 sub

input v−1 = x1, v0 = x2

v1 = v20
v2 = v1 + 1

v3 =
√
v2

v4 = v−1/v3
v5 = v3 − v4
output y = v5

y =
�

x2
2 + 1− x1�

x2
2 + 1

Computational graph Code list Algebraic expression
(a) (b) (c)

Figure 6.1. Essentially equivalent notations for an expression. In (a), the struc-
ture is shown by labeling nodes with operations only; the order of arguments is
shown by reading incoming edges left to right, e.g., the inputs to sub are the
results of the preceding sqrt and div, in that order. Similarly the input nodes
are x1 and x2 left to right. Form (c) has redundancy in the sense of repeated
subexpressions.

y1, . . . , yp, so that the code list defines a (vector) formal function (y1, . . . , yp) = f(x1, . . . , xn);
in case p = 1, it is written as a scalar function y = f(x1, . . . , xn).

Either m or n, but not both, can be zero. The case n = 0 and m ≥ 1 gives a constant
expression. For the scalar case p = 1, if m = 0 and n = 1 there are no operations, and y is the
same as x1, defining the identity function y = f(x1) = x1; while for p = 1, m = 0 and n ≥ 1
there are n possibilities, the coordinate projections y = πj(x1, . . . , xn) = xj (j = 1, . . . , n).

(c) By allowing redundancy, an expression always can be converted to a normal (scalar) algebraic
expression—Figure 6.1(c)—over the variable-set X and library F , defined recursively as follows:
– if x ∈ X is a variable symbol, then x is an algebraic expression;
– if ϕ ∈ F is a function symbol of arity k and if ei is an expression for i = 1, . . . , k, then the

function symbol application ϕ(e1, . . . , ek) is an algebraic expression.
Multiple outputs may be represented by tuples of separate algebraic expressions, e.g., the
vector function f(θ) = (cos(θ), sin(θ)). Redundancy may occur because this form has no way
of referring to a subexpression by name; if used several times, a subexpression must be repeated
in full at each use, as is

�
x2
2 + 1 in Figure 6.1(c).

The three forms are semantically equivalent, both at Level 1 and at Level 2. Because of its simple
recursive definition, (c) is the form used in the FTIA proof in Clause C.8.

When an expression is evaluated in interval mode, multiple instances of the same variable can
lead to excessive widening of the final result: e.g., evaluating x− x with an interval input x gives,
not [0, 0], but an interval twice the width of x. Thus the question, when it is valid to manipulate
expressions—e.g., to replace x−x by 0—is of especial importance for interval computation because
of its potential to tighten enclosures. This is the dependency issue, covered in Annex ??.

6.2. Function libraries. The formal operations are conceptually grouped into libraries,
based on whether the variables denote scalars (the point library), bare intervals (the bare in-
terval library), or decorated intervals (the decorated interval library), to reflect the three ways in
which an expression can be evaluated. This conceptual view is independent of how the operations
are presented in an actual computing environment: it could be via programming libraries, lan-
guage primitives, infix operators, or other means, just as the standard is not concerned with the
actual names or invocation methods. However, an implementation shall document how the formal
operations are mapped to language entities.

The point version is a theoretical (Level 1) function, of which each interval version—there is
at least one for each interval type provided by the implementation—is a finite-precision (Level 2)
interval extension, and each decorated interval version is a decorated interval extension.

15 November 28, 2013

DR
AF
T
8.2

Chapter 1
P1788/D8.2, November 28, 2013

Draft Standard For Interval Arithmetic §6.4

In this standard, an implementation’s library by definition comprises all its Level 2 versions of
operations that it provides for any of its supported interval types. For the set-based flavor, these
are specified in §10.6, 10.7, in §11.5, 11.6, 11.7 and in Clause 12. Different interval evaluations of f
come from using library operations of different Level 2 types, as the implementation may provide.

The set operations intersection and convexHull are not point-operations and cannot appear
directly in an arithmetic expression. However, they are useful for efficiently implementing interval
extensions of functions defined piecewise, see Example (ii) in §11.8.

6.3. The FTIA. Each library point-operation has a defined domain, the set of inputs where
it can be evaluated. This leads to the idea of natural domain Dom(f) of the point function
f(x) = f(x1, . . . , xn) defined by an expression: the set of points x where f is defined in the sense
that the whole expression can be successfully evaluated.
[Example. From the domains of / and

√
·, one finds the natural domain of

�
1 + 1/x is the union of

the two intervals −∞ < x ≤ −1 and 0 < x < +∞.]
In the set-based flavor, Moore’s basic theorem for a scalar function is as follows, with the above

notation.

Theorem 6.1 (Fundamental Theorem of Interval Arithmetic). Let y = f(x) be the result of
interval-evaluation of f over a box x = (x1, . . . ,xn) using any interval versions of its component
library functions. Then

(i) (“Basic” form of FTIA.) In all cases, y contains the range of f over x, that is, the set of
f(x) at points of x where it is defined:

y ⊇ Rge(f |x) = { f(x) | x ∈ x ∩Dom(f) }. (2)

(ii) (“Defined” form of FTIA.) If also each library operation in f is everywhere defined on its
inputs, while evaluating y, then f is everywhere defined on x, that is Dom(f) ⊇ x.

(iii) (“Continuous” form of FTIA.) If in addition to (ii), each library operation in f is everywhere
continuous on its inputs, while evaluating y, then f is everywhere continuous on x.

It is important that this theorem holds in finite precision, not just at Level 1. The decoration
system gives basic tools for checking the conditions for the “defined” and “continuous” forms during
evaluation of a function.

6.4. Related issues. When program code contains conditionals (including loops), the run
time data flow and hence the computed expression generally depends on the input data—for
instance, the example in §11.8 where a function is defined piecewise. The user is responsible for
checking that a property such as global continuity holds as intended in such cases. The standard
provides no way to check this automatically.

The standard requires that at Level 2, for all interval types, all operations and all inputs other
than NaI, the interval part of a decorated interval operation equal the corresponding bare interval
operation. This ensures that converting bare interval program code to use decorated intervals
leaves the data flow entirely unchanged (provided no conditionals depend on decoration values,
and NaI does not occur)—hence the computed expression and the interval part of its result are
unchanged. If this were not so, there might in principle be an arbitrarily large discrepancy between
the bare and the decorated versions of a computation that contains conditionals.

16 November 28, 2013

