
Constructors

Jürgen Wol� von Gudenberg, Marco Nehmeier

University of Würzburg

April 19, 2011

Rationale

When de�ning constructors for decorated intervals the mathematical rigor which
clearly dominates the work of P1788 should be composed with some common
sense rules. These rules shall support the acceptance of the standard. Hence in
this position paper, we reiterate a discussion from the mailing list and propose a
solution that follows the �Law of Least Surprise� and thus is acceptable for every
user. Nevertheless it delivers the rigorous results in all cases where the input is
�nite. Proper supersets are computed for in�nite constructor inputs.

At �rst we consider suggested constructors prior to decorations. They were
modeled as independent functions whereas we will use overloaded function names
and provide one main constructor that is able to build (all) the other ones. Please
note that x and y denote �oating point values as well as s represents a text string.

1 Existing Proposals

1.1 Vienna Proposal

There are constructors for standard, as well as for non-standard intervals.

1. standardInterval(x, y)

2. anyInterval(x, y)

3. Entire()

4. Empty()

Furthermore there are two functions for the construction of mid-rad intervals
intervalAbs(x,d) and intervalRel(x,d)

Type conversions between text strings and intervals are treated by explicit
syntax rules for the conversion as well as the function number2Interval(x). Im-
plicit type conversion is enabled in mixed type expressions.

1

1.2 P1788 Draft Standard

The current draft 02.2 provides constructors in section 5.4.1. That draft version
will soon be replaced by version 03.1

5 constructors are speci�ed.

1. �oatsToInterval(x, y)

2. �oatToInterval(x)

3. textToInterval(s)

4. Entire()

5. Empty()

Here s denotes a text string that de�nes a mathematical interval.

1.3 Common pitfalls

Di�erent language or cultural conventions should not play a role in P1788. There-
fore the text to interval conversion shall not contain delimiter- or separator char-
acters. Note that even the �oating point habitually is a comma in Germany. We
only need a transformation of a text string representing a real number to the da-
tum of the underlying type that is the closest neighbor in the rounding direction
(towards + or - in�nity). That constructor should also accept strings for special
datums, �NaN� or �in�nity�. For those text-to-interval constructors some of the
rules are not valid, namely Interval(“0.1”) is not a point interval.

The second and main point is introduced by an e-mail by Siegfried Rump that
reminds on long discussions in the past. The example given may be found in the
Vienna proposal as well, but with other solutions.

Assume a user has already an interval exponential function and needs

an interval hyperbolic cosine, _only_ for positive arguments. With

(*) cosh(x) = (exp(x) + exp(-x)) / 2

this is easy to do. The user knows that just inserting an interval X into (*)

causes overestimation. But cosh is strictly convex for positive arguments,

so

cosh([Xinf,Xsup]) = [cosh(Xinf) , cosh(Xsup)]

with proper rounding is correct for positive input. Using the interval exponential

for the point intervals [Xinf,Xinf] and [Xsup,Xsup] does the job.

Let's use the function names Lbound and Ubound to access the lower and

upper bound of an interval, so Lbound(X) is Xinf and Ubound(X) is Xsup.

Furthermore call the typecast from a floating-point number to a point

2

interval Interval(.), so that Interval(x) yields the point interval containing x.

Also denote the union of intervals X,Y by union(X,Y).

Now the user writes the following program:

function Y = cosh(X)

Xinf = Interval(Lbound(X))

Xsup = Interval(Ubound(X))

C1 = (exp(Xinf) + exp(-Xinf)) / 2

C2 = (exp(Xsup) + exp(-Xsup)) / 2

Y = union(C1,C2)

I claim this program looks innocent and correct.

Of course, it is not, that is the point. If the right bound Xsup of the

input interval X is infinite, then Interval(Ubound(X)) yields the empty

set. The exponential of the empty set is empty, so the final result

is just C1.

I also claim that this may easily slip well written test routines, and

the false cosh routine may be used for a long time until eventually

the error is discovered.

The most serious concern I have is that even if WE document this

behaviour very well, in a short while WE forget about this and WE

ourselves will fall into this trap. Believe me, I have this experience.

I think the only way to cure this is to redefine Interval(infinity) to

be [realmax,infinity], i.e. the set of real numbers not less than realmax.

I think the standard should manifest what everybody assumes anyway,

the default should be the most likely.

The best standard is a document which we never have to consult.

We try to �nd a compromise solution.

2 Constructors for Decorated Intervals

2.1 Decorated Intervals

Intervals are sets of real numbers (motion 3) decorated with 1 of the 5 �avors
de�ned in the exception handling part. Formally a decoration is a pair of a

3

function f and an interval x for which the listed property is valid.

• saf: everywhere de�ned, bounded and continuous.

• def: everywhere de�ned

• con: always true

• emp: nowhere de�ned

• ill: empty, ill-formed

The exceptions are ordered according to quality from top to bottom.
Constructors are functions building a (decorated) interval. Not all combina-

tions of interval and decoration part make sense.

2.2 Constructors

2.2.1 Level 1

A constructor is a (surjective) mapping R∗ × R∗ × D → DIR. Note that the set
of all decorated intervals is a proper subset of the Cartesian product, since many
combinations are not allowed. Even the restriction to bare intervals is not one
to one (injective), because the empty set has many origins. But the restriction
to non-empty intervals can be inverted. The inverse may be used to specify
the powerset operation de�nitions as executable formulas with the constructor
parameters.

2.2.2 Level 2

An abstract data type is de�ned in level 2. This motion is about the inf-sup
representation of that type. Hence, the speci�cation of the operations uses the
endpoints. Let

c : F× F× D→ DIF
(x, y, d) 7→ [x, y]d

be the constructor function. It is not de�ned for (−∞,−∞, d), (∞,∞, d) and
all triplets (x, y, d) with x > y. c is bounded and continuous, if both x and y
are bounded. Constructor parameters are �oating point datums including NaN .
The inverse constructor function resolves into two functions inf, sup from DIF
to F and a function deco : DIF→ D.

4

2.2.3 Default Constructor

We de�ne the constructors with explicit access to the endpoints. Hence, the
inf-sup instance of level 2 is concerned.

For each supported format P1788 shall provide a constructor with 3 arguments
(x, y, d) specifying the lower or upper endpoint and the decoration. x and y are
datums of the supported format, d is a decoration value. The resulting decorated
interval depends on a precondition that holds between the arguments.

A constructor often is called inside a function to de�ne the return value. In
this case the decoration parameter has to re�ect the possible exception.

Example:√
[0, 1] = Interval(0, 1, saf) = [0, 1]saf√

[−1, 1] = Interval(0, 1, def) = [0, 1]def
In the following table we show how the bare interval part depends on the

precondition, and that several intervals have an intrinsic decoration �avor id. The
output decoration is the minimum of the intrinsic and the given value, denoted
by deco = d ∧ id. R =realmax denotes the over�ow threshold.

argument precondition box dec remark
d∧ . . .

(x, y, d) −∞ = x = y [−∞,−R] con not bounded, not de�ned
−∞ = x < y <∞ [−∞, y] def not bounded, but de�ned
−∞ = x < y =∞ [−∞,∞] def not bounded, but de�ned
−∞ < x ≤ y <∞ [x, y] saf
−∞ < x < y =∞ [x,∞] def
−∞ < x = y =∞ [R,∞] con
x > y [x, y] ill keep the twisted bounds

as a hook for extensions
x = NaN or [NaN,NaN] ill illegal emptyset
y = NaN

2.2.4 Interval(∞)

We have de�ned another explicit notation for the 2 intervals that represent the
positive or negative over�ow range.

Interval(∞) = {x ∈ R|x ≥ R} , Interval(−∞) = {x ∈ R|x ≤ −R}
Those terms otherwise would denote the empty set, but we have enough no-

tations for that.
In any case where there is a di�erence, our version of the constructor contains

the results found by the rigid interpretation.
Interval(1/0.0) =Interval(∞) =[R,∞] ⊃ ∅emp= [1,1] / [0,0]

5

2.2.5 Further constructors

The default value for the decoration parameter is saf . 5 further constructors for
the 2 parameter version are de�ned for convenience. Their semantics are given
with respect to the main constructor. They are listed in the following table. A
similar table may be provided for the 3 parameter version.

argument semantics remark
(x) Interval(x,x) point interval
("p","q") Interval(fpdown("p"), fpup("q")) see below
("p") Interval(fpdown("p"), fpup("p")) not necessarily point interval
(A) A = A.boxA.dec copy
() ∅emp valid emptyset
fpdown and fpup are functions that deliver a �oating point datum from a

given string. They check whether the input string represents a real number or
in�nity. If this is not the case, NaN is returned, else they convert such a string
to the adjacent �oating point datum towards minus or plus in�nity, respectively.

Note further that the only way to construct a valid emptyset is to use the
empty argument list.

The Motion

For each supported format P1788 shall provide a constructor with 3 arguments
(x, y, d) specifying the lower or upper endpoint and the decoration. x and y are
datums of the supported format, d is a decoration value. The resulting decorated
interval depends on a precondition that holds between the arguments, see 2.2.3

It shall also provide two functions to transform strings into �oating point
datums

and a constructor for a valid emptyset with an empty parameter list.
More constructors like those given in 2.2.5 should be provided.

6

