Moore

Interval Arithmetic in modern C++

by Walter F. Mascarenhas

Version 0.0.1, November, 2016

ii

Contents

1 The Moore library

1.1 Introduction e e e
1.2 Howtousethelibrary e
1.2.1 Compilationmodes e e e e e e
1.3 Endpoints e e e e e e e
1.3.1 floatisspecial L
1.3.2 double e e e
1.3.3 long double e e e
134 Quad e
1.3.5 Real<N> e
1.3.6 CommonEnd e
1.4 Intervals e e
1.4.1 TheHulltype e
1.5 Inputandoutput e e
1.6 ACCUTACY . . . o vt o et e e e e e e e e e e e e e e
1.7 Overlap e e e e
1.8 EXCEeptionS. e e e e
1.9 Interval literals e e e
1.10 Compliance with the IEEE Standard for interval arithmetic
1.11 Common mistakes e e e e e
1.11.1 Explicit CONStructions o v v i it e e e e e e e e e e
1.L11.2 Integer constantS it ittt e e e e
1.12 Reporting Bugs L e e
2 Reference
2.1 Arithmetic L e e e
22 ClassInterval e e e e
2.2.1 Constructors for class Interval<E>
2.2.2 Creators for class Interval<E>
23 Inputand OUtpub L L e e e e e e e e e e e e e e e e
2.4 Boolean functions of intervals
2.5 Interval functions of intervals
2.6 Numeric functions of intervals
2.7 Reversefunctions e e
2.8 SEtoperations i . e
2.9 Miscellaneous functions e e e e e

Main Index
Index of Functions
Index of Standard Functions

Index of Types

iii

13
13
15
15
16
17
20
22
24
25
26
27

29

32

34

35

v

CONTENTS

Chapter 1

The Moore library

1.1 Introduction

This document describes the Moore library, which implements interval arithmetic in modern C++. The purpose of
this library is to allow users to use intervals in a simple, efficient and intuitive way. We would like to allow users
to write code as simple as the next one in order to handle intervals with double precision endpoints.

Interval<> x("[1,2]1");

Interval<> y(2,3);

Interval<> z = x + sin(y);

cout << "x + sin(y) = " << z << endl;

We also would like to to allow users more interested in speed than accuracy to write

Interval<float> x("[1,2]1");
Interval<float> y(2,3);
Interval<float> z = x + sin(y);

cout << "x + sin(y) = " << z << endl;

and allow users looking for more accuracy to write something like

Interval<Real<1024>> x("[1,21");
Interval<Real<1024>> y(2,3);
Interval<Real<1024>> z = x + sin(y);
cout << "x + sin(y) = " << z << endl;

where Real<1024> represents a floating point number with 1024 bits of mantissa.

Unfortunately, reality gets into our way and we must make compromises in order to achieve efficiency, consis-
tency and easy of use. In the end, we do believe that we get close to these goals, and the users of the library will
be able to write the following code

#include "moore/config/minimal.h" // the minimal declarations required to use the library:
Moore: :RaiRounding r; // setting the rounding mode to upwards

Moore: :Interval<> x("[1,2]1");

Moore: :Interval<> y(2.0f, 3.0f); // constants are floats, not ints.
Moore: :Interval<> z = x + sin(y);

std::cout << "x + y = " << z << std::endl;

We can replace Interval<> in the code above by Interval<T>, where T is float, double, long double,
Moore: :Quad or Moore: :Real<N>. The type Moore: : Quad represents quadruple precision floating point num-
bers, and Real<N> handles floating point numbers with mantissa of N bits, for an integer N >= 128 chosen at
compile time. We can also write code which takes intervals with generic types of endpoints as arguments, as in:

template <End D, End E>
Hull<D,E> generic(Interval<D> const& x, Interval<E> const& y)
{
auto h = exp(x + cos(y));
x * sin(h) + y;
return w + h;

auto w

2 CHAPTER 1. THE MOORE LIBRARY

Users of previous versions of the C++ language will not recognize the syntax

template <End D, End E>
Hull<D,E> generic(Interval<D> const& x, Interval<E> const& y)

used in the code above. They would be more used to

template <typename D, typename E>
Hull<D,E> generic(Interval<D> const& x, Interval<E> const& y)

and this is one point in which the Moore library differs from the previous C++ libraries for interval arithmetic. The
Moore library was build using a new feature of the C++ language called “concepts”, about which you can learn
by searching with Google. In summary, concepts allow us to restrict the types used as parameters in templates,
so that we get less spurious error messages due to failures in the compilation of templates. For instance, by using
End instead of typename we ensure that only valid endpoints of intervals will be considered for the types D and
E. They also help us to select which overloads of template function and classes should be used.

The key “concept” in the Moore library is End, which represents the endpoints of intervals. Using end-
points of type E we build intervals of type Interval<E>. We can operate with endpoints of different types
D and E, and obtain endpoints of a type large enough to represent objects of both of them, which we call
by CommonEnd<D,E>. Similarly, operating with intervals of type Interval<D> and Interval<E> we obtain
an interval of type Hul1l<D,E> = Interval<CommonEnd<D,E», which can represent exactly intervals of types
Interval<D> and Interval<E>.

In summary, the main points in the library are:

e Endpoints: which are represented by the C++ concept End and are discussed in section 1.3.
e When we operate with endpoints of type D and E we obtain endpoints of type CommonEnd<D,E>.

e Intervals: for each type of endpoint E we have a corresponding interval class Interval<E>, and the family
of all intervals is represented by the concept CInterval.

e Functions and operators: the library provides a comprehensive family of functions and operators to handle
intervals and endpoints, which are listed in the Index of functions at the end of this document. It also
implements most of the functions mandated by the IEEE standard for floating point arithmetic (see the
Index of standard functions.) As we explain in Section 1.10, the library does not conform to the IEEE
standard, but we do believe that it functions cover the most relevant part of it. It also has several useful
functions which were not considered by the standard.

e When we operate with endpoints of types D and E, and the corresponding intervals Interval<D> and
Interval<E>, we obtain intervals of type Hul1<D,E>. IfE = D then Hull<D,E> = Interval<E> and if
only care about one type E of endpoint then you can read Hul1<D,E> as Interval<E>.

e Endpoints and intervals are represented by the concept EndOrInterval, so that we can write code like the
following function, which returns the convex hull of an arbitrary number of intervals and endpoints

template <EndOrInterval... X>
Hull<X...> hull(X const&... x){}

auto i = hull(-1.0f, Interval<>(3.0,4.0), Interval<Quad>(3.0,4.0));

In the code above the compiler deduces the type of the interval i and we do not need to worry much about it.
When you first use the Moore library, we suggest that you proceed in the same way: just write the code without
paying to much attention to the technical details on which the library is based and see what happens. As you learn
more about the library you will be able to do more sophisticated things, and we hope this document will help you
to achieve your goals.

Ideally, you would be able to read the next section, learn how to compile and link the library and just write
your code in an intuitive way, as in

template <End E>
void print_my_function(Interva1<E> const\& x, Interval<E> const\& y)
{
Interval<E> w = exp(x) * cos(y) + 4.0f * log(y);
std::cout << w << std::endl;
}

1.2. HOW TO USE THE LIBRARY 3

As you try to write more advanced code it is likely that things will not work smoothly, and then you can read
the rest of this document to learn more about the library. You may also read parts of the document in order to use
more advanced options. For instance, you may not be pleased by the format in which the intervals are printed in
the code above. In this case you should read Section 2.3 to learn about how to format the output.

1.2 How to use the library
The Moore library was written for people who know how to compile and link a C++ program. We assume that you
use an IDE with which you can handle “c++ projects” with easy. For instance, the library was developed using
QtCreator, which is a good open source IDE, and people using this IDE will probably have less trouble compiling
and linking the library (and it will be easier for us to help them in case of trouble.)

Under the assumptions of the previous paragraph, you should follow these steps in order to use the library:

e You must use the compiler gcc 6.0, or a latter version of it. You should have the MPFR and GMP libraries

installed in your machine. In order to use the quadruple precision type Moore: : Quad you will also need the
library quadmath.

e Send an email message to walter.mascarenhas@ gmail.com asking for the Moore library. The subject of
your message should contain the words “Moore library”. We will appreciate if you tell us for what purpose
you would like to use the library.

e We will send you a compressed file with the latest version of the library and of this document. Uncompress
this file in a folder of your machine, which we will call moore_root from now on.

e Set the options of your project so that header files in the folder moore_root/include will be found by the
compiler. For instance, if you use a makefile then it should contain something like

INCPATH = -I /home/me/moore_root/include
In QtCreator you could add an option like this one to your project:
QMAKE_INCDIR += home/me/moore_root/include

e Make sure that you are using a version of C++ which supports concepts. In a makefile you would do
something like

CXXFLAGS = -std=c++1z -fconcepts ...
In QtCreator you could add an option like this one to your .pro file:

CONFIG+=c++1z
CXXFLAGS+=-fconcepts

e Make sure that gcc’s optimizer will handle properly the arithmetic operations used by the Moore library, by
raising the following flags in your makefile:

CXXFLAGS = -frounding-math -mfpmath=sse -msse2 -fsignaling-nans

In QtCreator you could add options like this to your .pro file:

CXXFLAGS+=-frounding-math CXXFLAGS+=-mfpmath=sse CXXFLAGS+=-msse2 CXXFLAGS+=-fsignaling-nans
e Link the MFPR and GMP libraries. In a makefile you would do something like

LIBS = $(SUBLIBS) -lmpfr -lgmp

In QtCreator you could add the following option to your .pro file:

QMAKE_LIBS +=-1lmpfr QMAKE_LIBS +=-lgmp

4 CHAPTER 1. THE MOORE LIBRARY

e Include all .cc files in the folder moore_root/src/minimal in your project. To use the quadruple precision
Quad type then include also the filemoore_root/src/quad/quad. cc and to use the type Moore: :Real<N>
include the file moore_root/src/real/real.cc.

e To use the Moore: :Quad you must raise the -fext-numeric-literals compilation flag and link the
quadmath library. In a makefile you would do something like

CXXFLAGS = -fext-numeric-literals ...
LIBS = $(SUBLIBS) -lquadmath -lmpfr -lgmp

and in QtCreator you could add the following option to your .pro file:

QMAKE_CXXFLAGS+=-fext-numeric-literals
QMAKE_LIBS+= -lquadmath

e Choose a “compilation mode”. At first, just choose the Debug mode on your IDE. As you learn more about
the library, read Section 1.2.1 below.

e Once you are able to compile and link your code, be aware that you must set the rounding mode to upwards
in order to use the library. You can achieve that by constructing an object of type RaiiRounding, which
will restore the old rounding mode when it is destroyed. In summary, your code would look like this

#include "moore/config/minimal.h" // the basic declarations to use the library
int main()
{

Moore::RaiiRounding r
Your code goes here

// implicit call to the destructor of r, resetting the rounding mode.

}

If you need to mix code using the library with code requiring other rounding modes then you should create
objects of type Moore::RaiiRounding inside blocks, as in

#include "moore/minimal.h" // the basic declarations to use the library
int main()
{
{
Moore: :RaiiRounding r
Moore code here
// implicit call to the destructor of r, resetting the rounding mode.

}
other code here

{
Moore: :RaiiRounding r
Moore code here
// implicit call to the destructor of r, resetting the rounding mode.

}
}

1.2.1 Compilation modes
The Moore library can be compiled in three modes: Debug, Fast and Safe.

e In debug mode usually the optimizer is turned off and you get slower code, but with more warnings and the
convenience of being able to follow your code step by step with a debugger. While you are learning about
the library you should use this mode. In other to use it in an IDE you simply follow the usual procedure to
generate code with debug information with this IDE. Formally, for the Moore library, you will be in Debug
mode if NDEBUG is not defined when you compile your code. In Debug mode, the library uses assertions to
check many things, and the debugger will stop your program and show you were the problem is in case an
error is detected.

1.3. ENDPOINTS 5

e In principle, the Fast mode will be turned on when you define NDEBUG (as most IDEs do when you ask for
an optimized release build.) In this case, the Moore library does not check anything and bugs in your code
may be undetected and lead to crashes, infinite loops or worse: incorrect results that look like as if they
were correct. Therefore, you should only use the Fast mode when you are sure that your code is correct.

e Unfortunately, there are bugs which are introduced by the optimizer, or which only show up when NDEBUG is
defined, and finding them is a painful process. In order to help you (and ourselves) to try to find such bugs,
by defining both NDEBUG and MOORE_IN_SAFE_MODE you will compile the Moore library in Safe mode.
In this mode, the library performs all the verifications it would perform in Debug mode, and signals an
exception when a problem is found (see Section 1.8), and in the library’s default configuration exceptions
terminate the program. Even when your are confident that your code is correct, you may consider compiling
it in Safe mode and running it just to check that everything is fine. Your “safe code” will be slower but you
can let it run overnight for instance, just as a safety measure.

1.3 Endpoints

The main concept in the Moore library is called End, and represents the endpoints of the intervals. Formally, the
library is based on few axioms about Endpoints, like:

AOQ There is a set & of types of endpoints. For example, & could contain the types float and double.

Al A type Eis in & if and only if is_end<E>() returns true, and E satisfies the concept End. Such types are
called endpoint types.

A2 The type float isin &.

A5 An endpoint type contains at least one object NAN which represents not a numbers, in the IEEE 754 sense.
It also contains an object to represent +oo and another to represent -oo.

A4 If D and E are in & then there exists a type CommonEnd<D,E> is &, which can represent objects of type D
and E exactly.

A5 CommonEnd<float,E> = E.

A6 IfD and E are in & then the comparison operators ==, !=, <, >, <=, >= are defined for objects of type D and
E, and return a boolean with meaning of the IEEE 754. In particular, D: :NAN == E::NAN returns false,
D::NAN != E::NAN returns true and D: :NAN < e returns false for all e in E.

A7 Other technical details, like

CommonEnd<C,D,E> = CommonEnd<CommonEnd<C,D>,E>>.

However, axioms and formality are not the point of the library. We would like that to let you use it intuitively,
thinking that there are 5 types of endpoints: float, double, long double, Quad and Real<N>. You can mix
them in arithmetic operations and function calls and get reasonable results. In the next sections we look at each
one of these types.

1.3.1 float is special

The type float receives an special treatment from the library. Intuitively, it is the smallest type that we support.
In other words, we assume that there is an exact conversion of floats to all other endpoint types that we use. Of
course, this restricts in the type of endpoints that which we can use with the library, but we believe that the trade
off is positive. We can then simplify things and write (small) constants using floats. We can also express nan’s
and infinities simply as

NAN is the universal nan, INFINITY is the universal positive infinity,

because since C++11 the macros NAN and INFINITY are part of the C++ standard and correspond to float
constants with the meaning that we want.
As a result of the assumption above, for all endpoint types E supported by the library we can write code like

Interval<T> i(2.0f, INFINITY);
i=0.5f x £+ 2.0f;

6 CHAPTER 1. THE MOORE LIBRARY

1.3.2 double

We expect that double will be the most used type of endpoint. It combines efficiency with precision and this is
the first type you should consider using. It is also the default endpoint type for the Interval<T> class, so that
Interval<> represents an interval with double endpoints.

1.3.3 long double

Long doubles are more precise that doubles, but less efficient. As a result, code using long doubles is less
used and less tested, and we do not know a single library using long doubles which does not have bugs on basic
operations (or had bugs in previous versions.) Therefore, if you decide to use long doubles then you should test
your code very carefully.

1.3.4 Quad

The type Moore: : Quad is an alias to gcc’s type __float128. It provides floating point arithmetic with mantissas
of 113 bits. Unfortunately, due to a bug in the current implementation of __float128, Quads should not be used
together with long doubles. The people responsible for implementing gec’s __float128 say that this problem
will be fixed in gec’s version 7.

Moreover, the square roots of __float128 are not rounded sharply, and as a result the square roots of intervals
with endpoints of this type may be slight larger than the tightest possible result.

1.3.5 Real<N>

The type Moore: :Real<N> is a wrapper to the __mpfr_struct provided by the MPFR library. This wrapper is
stack based (ie., the memory for the objects is allocated in he stack) and the number N of bits in the mantissa is
fixed at compile time. Therefore, we do not offer the full power of the MPFR library, and you should not choose
a huge value for N. For efficiency reasons, you should also pick N as a multiple of 64 (N must be at least 128.)

If you plan to use Real<N> in applications other than interval arithmetic then be aware that the arithmetic
operations involving objects of this type are always rounded up.

1.3.6 CommonEnd

Given endpoint types E1, E2, ..., EN , the type C = CommonEnd<Es. ..> is such that objects of type E1,
E2, ..., EN can be converted to C exactly. We also assume that the results of arithmetic operations of objects
of type EI and EJ can be converted exactly to type C.

1.4 Intervals

There is only one type of interval in the Moore library: Interval<E>, which is parameterized by the endpoint
type E. These intervals represent closed convex subsets of the real line, as

[1 (the empty set), [-00,1], [-2,3], [3,+00].

The intervals are defined by two endpoints: its inf and sup, which may be finite on infinite (inf and sup are
NAN for the empty interval.) For non empty intervals, we must have that inf <= sup, and the following entities
are not intervals

[-00,-00], [+oo,+00], [1,-1], [NAN,2]

Ideally, you should be able to use intervals intuitively: you can perform arithmetic operations with them,
compute their sin and cos etc. The library offers the basic guarantee regarding these operations, ie., the computed
value of a function f evaluated at an interval [a,b] contains the exact value f (x) forallx in [a,b].

You can mix intervals with different types of endpoints, and usually an operation with intervals with endpoints
of type D and E results in an interval of type Hul1<D,E> = Interval<CommonEnd<D,E> >, which is described
in the next section.

1.5. INPUT AND OUTPUT 7

1.4.1 The Hull type

Given types X1, X2, ..., XN which are either interval or endpoint types, H = Hull<Xs...> is an interval
type with endpoints of type E such that objects of all types XI with are endpoints can be converted exactly to E,
and objects of all types XI with are intervals can be converted exactly to H. Moreover, the same exact conversions
hold for the results of arithmetic operations involving objects of type XI and XJ.

1.5 Input and output

The intervals in the Moore library can be written and read from streams and converted to and from text. Interval
can be read in the following ways:

Interval<E> x("[1,2]1"); // constructing and interval from an string
Accuracy a;

Interval<E> y("[2,3]",a); // now with information about the accuracy
bool v = try_parse(x,"[4,5"]); // trying to parse an string

std::cin >> y; // reading an interval from a stream
try_scan(x, std::cin); // trying to read one interval from a stream
std::vector<Interval<E>> is;

try_scan(is, std::cin); // trying to read intervals from a stream

In the examples above, try functions return true or false, indicating whether the input is valid, and do not
signal exceptions when the input is invalid. The other functions signal an exception when the input is invalid. By
validity we mean that the input is a interval literal according to the IEEE standard for floating point arithmetic (see
Section 1.9.)

Intervals can be written to streams and strings as in

Interval<E> i(1.0f);
std::vector<Interval<E>> is;
std::string format_string = "}IE}W10";
Format format_object(format_string) ;

std::string str = to_text(i);
str = to_text(i, format_string);

write(is, cout);
try_write(is, cout, format_object);

str = interval_to_exact(i);
write_exact(is, cout);

cout << format_object << ij;
cout << Io::UPPER_CASE << i;
cout << std::setprecision(20) << std::right << i;

In these examples we use strings (like in printf) or an object of type Io: :Format to specify the format of
the output. In case of output streams, we can also use the standard manipulators. For instance, in the last line of
the example we specify that the interval should be represented with at least 20 characters, and it should be right
aligned within these 20 characters.

Besides the options provided by the usual C++ stream manipulators, the library provides many options for
formatting the output. These options are listed in Tables 1.1 and 1.2. You can use a string of the form "%Op-
tion%Option%Option..." in functions which we take a format argument, or you can use an object f of type
To: :Format, which you can construct from a string as above or calling functions of the form set (f,option),
and Table 1.2 contains a list of such options. You can also insert these options in the output stream, as in the
example

Interval<E> i("[1.0,2.01");

Io::Format f("/IA%AR%W20"); // Hexadecimal output, right aligned within 20 characters
write(cout, i, f);

os << Jo::HEX << Io::RIGHT << Io::Width(20) << i; // the same as the last line

8 CHAPTER 1. THE MOORE LIBRARY
Table 1.1: Options for formatting intervals (_ indicates blanks)
Name Tag Description Samples
Alignment A alignment within | %AL (left), W9 %AC) (center, W9 %AR (right, W9
width (1,11 ____ __[1,17__ ——__[1,1]
Border B spaces between %BO %B1 %B3
slack the border and [1,1] [1,1_] [__1,1__1
the numbers
Center , spaces between %,0 %yl %,3
slack the comma and [1,1] [1,_1] [1,___1]
the sup
Empty Y how empty is %YB blank %Y infs %YT text
displayed (] [+inf,-inf] [empty]
Entire E how entire is %EI infs %ET
displayed [-inf,+inf] [entire]
Exponent X spaces occupied | %X1 %X2 %X3
Width by the exponent [1.0e1,1.0e1] [1.0e01,1.0e01] [1.0e001,1.0e001]
Infinity F how infinity %FS short %FL = long,
is displayed [-inf,inf] [infinity,infinity
Inf G alignment of %GL left, %N3 %GC center, %N3 %GR right, %N3
Alignment the inf [1__,1__] L1_,1__] [__1,1__]
Number N space occupied %GR, %N3 %GI, %N3 %GR, %N3
Width by the numbers [1__,1__1 [_1_,1__1 [__1,1__1
Notation I Equivalent to %IF fixed %IA, hexadecimal
the a,f,g and [1.01, 2.02] [0x1.0P+01,0x2.0P+01]
e options in %IE scientific %IG, shortest
printf [1.01e-1, 2.02e-1] The shortest among %IF and %IE
Padding D pad the output %DN no %DY yes
with zeros [1,1] [1.00,1.00]
Precision P digits after the WP1 YA %P3
decimal point [1.1,1.2] [1.11,1.18] [1.111,1.178]
Overlap o Overlap %0N number %0T text
style [+1,+2] [1,2]
Show + whether the + %+Y yes %+N no
Sign signs is shown [+1,+2] [1,2]
Sup S alignment of S = left,N = 3 S = center,N = 3 S = right,N = 3
Alignment the sup [1__,1__] (1__, 1] (__,__1]
Text C case for %CL lower case %CUupper case, N = 3 S = right,N = 3
case the letters [0x1p+1,0x1p+1] [0X1P+1,0X1P+1] [1__,__1]
Width W space occupied L = left,W =9 L = center,W =7 L = right,W = 6
by the interval [1,11____ _[1,11_ _[1,1]

1.6 Accuracy

The enum Accuracy indicates the accuracy with which strings are converted to intervals, or with which in-
tervals are read from streams. Accuracy::Exact means that the endpoints of the interval were read exactly.
Accuracy: : Tight indicates that the read endpoints are with one ulp from the exact one encoded in the string or
stream. Accuracy: :Imprecise indicates that the endpoint read may differ from the exact one by many ulp’s.
Finally, Accuracy: : Invalid indicates that the text in the string or stream does is not an interval literal.

enum class Accuracy

{

},

Empty = 0, Exact = 1, Tight = 2, Imprecise = 3, Invalid = 4

1.7. OVERLAP 9

Table 1.2: Constants for formatting the outpup

Name Option Type Description/Effect
CENTER %AC Align Intervals are centered, asin _[1,1] _

Equivalent to std: :ios_base: :internal
DONT_PAD %DN Padding Numbers are not padded with zeros
EMPTY_AS_BLANK %YB Empty The empty interval is written as []
EMPTY_AS_INFS WYI Empty The empty interval is written as [+inf,-inf]
EMPTY_AS_TEXT WT Empty The empty interval is written as empty
ENTIRE_AS_INFS %EI Entire The entire interval is written as [-inf,+inf]
ENTIRE_AS_TEXT HET Entire The entire interval is written as entire
FIXED WIF Notation Numbers are written in fixed notation
HEX WIA Notation Numbers are written in hexadecimal format
INF_CENTER %GC InfAlign The infimum in centered, asin [_1_,1]
INF_LEFT %GL InfAlign The infimum in left aligned, as in [1__,1]
INF_RIGHT %GR InfAlign The infimum in right aligned, asin [__1,1]
LEFT %AL Align Intervals are left aligned, as in [1,1]___

Equivalent to std: :ios_base: :left
LONG_INFINITY WFL Infinity Infinity is written as infinity
LOWER_CASE %CL TextCase Output in lower case

Equivalent to !std::ios_base::uppercase
NO_SIGN N Sign The + sign is not shown

Equivalent to !std: :ios_base: : showpos
OVERLAP_AS_NUMBER 0N OverlapStyle Overlaps are written as numbers
OVERLAP_AS_TEXT %0T OverlapStyle Overlaps are written as text
RIGHT HAR Align Intervals are right aligned, as in __[1,1].

Equivalent to std: :ios_base: :right
SCIENTIFIC HIE Notation Numbers are in scientific notation
SHORT WIG Notation Numbers are written in the shortest among
SHORT_INFINITY WFS Infinity Infinity is written as inf

the fixed and scientific format
SUP_CENTER %SC SupAlign The supremum in centered, as in [1,_1_]
SUP_LEFT %SL SupAlign The supremum in left aligned, as in [1,1__]
SUP_RIGHT SR SupAlign The supremum in right aligned, as in [1, __1]
SIGN Wty Sign The + sign is shown

Equivalent to std: :ios_base: : showpos
UPPER_CASE WCU TextCase Output in upper case

Equivalent to !std: : ios_base: :uppercase

1.7 Overlap

The enum Overlap has the 16 members indicated described in Figure 1.1, and an additional Undef ined member.
We use the following syntax to represent its members:

enum class Overlap : uint32_t

{

Undefined =0, Overlaps =1 << 5, Contains =1 << 11,
BothEmpty = 1 << 0, Starts =1 << 6, StartedBy =1 << 12,
FirstEmpty = 1 << 1, ContainedBy = 1 << 7, OverlappedBy = 1 << 13,
SecondEmpty = 1 << 2, Finishes =1 << 8, MetBy =1 << 14,
Before =1 << 3, Equal =1 << 9, After =1 << 15
Meets =1 << 4, FinishedBy = 1 << 10,

};

1.8 Exceptions

When the Moore library is compiled in Debug or Safe mode, exceptions lead to the termination of the program.
In Safe mode, this termination is caused by a call to std: :exit (EXIT_FAILURE) in the default error handler

10 CHAPTER 1. THE MOORE LIBRARY

provided by the library. This error handler also prints a message explaining the cause of the exception.

You can change this default behavior by linking a different error handler to your program. In order to that, you
should write another version of the function on_error which is defined on the file minimal/on_error.cc, and
link your own version of this file.

If the code is compiled in Fast mode then there is no checking for exceptions: we simply assume that you know
that no exception will happen and would not like to pay any overheads. In this case, if your code is inconsistent
then it may get into infinite loops, crash or worse: generate wrong results which look like correct ones.

1.9 Interval literals

The following table was copied from the IEEE standard 1788-2015 As in the IEEE standard, the following forms

Table 1.3: Grammar for literals, using the notation of 5.12.3 of IEEE Std 754-2008. Integer literal is integerLiteral,
number literal is numberLiteral, interval literal is IntvlLiteral \t denotes the TAB character.

decDigit [0123456789]

nonzeroDecDigit [123456789]

hexDigit [0123456789abcdef]

spaceChar [\t]

natural decDigit+

sign [+-]

integerLiteral {sign} 7 {natural}

decSignicand {decDigit} *-{decDigit} + | {decDigit} + -{decDigit} +
hexSignicand {hexDigit} * "." {hexDigit} + | {hexDigit} + "." | {hexDigit} +
decNumlLit {sign} ? {decSignicand} ("e" {integerLiteral})?

hexNumlLit {sign} ? "0Ox" {hexSignicand} "p" {integerLiteral}
positiveNatural ("0")* {nonzeroDecDigit} {decDigit} *

ratNumLit {integerLiteral} "/" {positiveNatural }

numberLiteral {decNumlLit} | {hexNumLit} | {ratNumLit}

sp {spaceChar} *

dir "d" | "u"

pointIntvl "[" {sp} {numberLiteral} {sp} "]"

infSuplntvl "[" {sp} {numberLiteral} {sp} "," {sp} {numberLiteral} {sp} "]"
radius {natural }

uncertlntvl {sign} ? {decSignicand} "?" {radius} ? {dir} ? ("e" {integerLiteral})?
IntvlLiteral {pointIntvl} | {infSuplIntvl} | {uncertIntvl}

of interval literal are also supported (the following lines were adapted from that standard):

e In the string [1,u], the bound 1 may be -oo and u may be +oo. Any of 1 and u may be omitted, with
implied values 1 = -ooandu = +oo respectively, e.g., [,] denotes Entire.

e The uncertain form with radius ? is used for unbounded intervals, e.g., m?7d denotes [-oo,m], m?7u
[m,+o0] m??u denotes [m, +oo], and m?? denotes Entire with m being like a comment.

e The strings [] and [empty] whose value is Empty; the string [entire] whose value is Entire. Space
between elements of a literal is optional: it denotes zero or more space characters. E.g., one may write
[empty] or [empty], etc.

1.10 Compliance with the IEEE Standard for interval arithmetic

The Moore is compliant to many aspects of the IEEE standard for arithmetic, but it does not comply to the standard
in the following points:

e Decorations: The Moore library does not implement decorations, because we see no use for them in the use
cases in which are most interested. Therefore, for us, decorations would introduce an overhead without any
benefits.

1.11. COMMON MISTAKES 11

e Exceptions: The treatment of exceptions in the Moore library depends on the compilation mode. In Debug
mode exceptional cases cause the failure of assertions and the program is stopped by the debugger. In Safe
mode exceptions are ignored, and if it is up to the user to make sure that exceptional situations do not occur.
Finally, in Safe mode, exceptions are handled by an error handler, and the default error handler terminates
the program.

e The sign of zero: The functions provided by the Moore library do not define the sign of their output when
this output is equal to zero. In this case, it would be up to user to check whether the returned value has a
positive or negative sign in this case.

e Several functions in the library differ in the way they treat empty sets from what is mandated by the stan-
dard. For instance, the functions inf and sup return NAN when their input is empty. Other functions, like
cancel_minus and cancel_plus also handle infinite intervals differently from what is mandated by the
standard. Therefore, you should read the documentation provided in the Reference chapter below in cases
in which empty and infinite intervals are relevant for you.

1.11 Common mistakes

1.11.1 Explicit constructions

All constructors in the Moore Library are explicit, in order to avoid implicit (and unwanted conversions.) Unfor-
tunately, this has the side effect that code like the following will not work:

Interval<> i = 1.0f; // Unfortunately, this is wrong
Instead, and you should write
Interval<> i(1.0f);

In our opinion, this was an unfortunate choice made the people responsible for the C++ language, and we
believe that allowing implicit constructors would be worse than forbidding the invalid expression above.

1.11.2 Integer constants

The default type to express constants in the Moore library is f1loat, and you should write

Interval<T> i(-1.0f);
Interval<T> j(-1.0f, 2.0f);
Interval<T> k = 0.5f * j + 2.0f;

instead of

Interval<T> i(-1);
Interval<T> j(-1, 2);
Interval<T> k = 0.5 * j + 2; // this will not work for \texttt{T = float}

Interval<T> i(-1.0f);
Interval<T> j(-1.0f, 2.0f);
Interval<T> k = 0.5f * j + 2.0f;

1.12 Reporting Bugs

As any software, it is likely that the Moore library contains bugs, and we ask the user to help us to fix them. If you
do find something that looks like a bug we ask you to follow this procedure

e Read the Common Mistakes section and check whether this is indeed a bug or a “feature” of the library.
e Try to write the simplest code possible that shows the bug

e Send an email message to walter.mascarenhas @ gmail.com with “Bug in the Moore library” as the subject.
This message should contain a concise description of the bug and some code in which it occurs.

12 CHAPTER 1. THE MOORE LIBRARY

IEEE Std 1788-2015
IEEE Standard for Interval Arithmetic

Table 10.7. The 16 states of interval overlapping situations for intervals a,b.
Notation ¥, means “for all a in a,” and so on. Phrases within a cell are joined by “and,”
e.g., starts is specified by (a =0 N a < b).

State a@ b Set Bound Diagram
is specification specification
States with either interval empty
bothEmpty | a =0 A b =10
firstEmpty | a=0 A b#(
secondEmpty | a# 0 A b=10
States with both intervals nonempty
before YWy a < b a<b —_ 2 b
a a
VW, a<b a<a
“ — _EIJ b
meets d.¥p a < b a=~b —
3uTp a =b b<b 4
JaVp a < b a<b
overlaps A%, a < b b<a ._—)._ b
d.3dp b < @ a<b 4 @
Wyd,a < b
a=1"b !J b
starts Yaode b <a =<3 ra—
a<b a
AV, a < b a @
. Ve b < a b<a b b
containedB - = iy —
Y1 3Vea<b a<b . =
Ve b < a
o bBVa) Q <a ,}—?)_
finishes Ypda b < a -3 - —_—
a=~b . a
Vody a < b = a
equals Vodp a = b a=2»n 2 b
d Vp3a b=a a="5 —
.V a < b
a<b /
finishedBy Vo a < b ?_f: .;g
Wid, b < a r=a a a
tai da¥e a < b a<b 3) b
contains — —_
d.Ve b < a b<wa a a
Vady b < a
- b=a } }
startedBy Wpd, a < b E{ % —J.#._
3. b < a “ “
AW b < a b<a —
‘) (43) = _J b
overlappedBy Ve b < a a<bhb —
dpde a < b b<a @ @
ViVa b < a b<b
“ _ T o b
metBy dpda b =a b=a —_—
TpVa b < a a<a a o
after WiV, b < a b<a 2 b —
a a
42

Copyright () 2015 IEEE. All rights reserved.

Figure 1.1: Meaning of the values of the Enum Overlap. This page was copied from the IEEE Standard for
floating point arithmetic, as indicated by the copyright above

Chapter 2

Reference

2.1 Arithmetic

Hull<D,E> add(D const& x, Interval<E> const& y) [Function]
Hull<D,E> add(Interval<D> const& x, E const& y) [Function]
Hull<D,E> add(Interval<D> const& x, Interval<E> const& y) [Function]

returns a tight interval containing the exactx + y.

Hull<D,E> add_ends(D const& x, E const& y) [Function]

Returns a tight interval containing the exact x + y. The function assumes that x and y are finite, and signal an
exception otherwise.

Hull<D,E> div(D const& x, Interval<E> const& y) [Function]
Hull<D,E> div(Interval<D> const& x, E const& y) [Function]
Hull<D,E> div(Interval<D> const& x, Interval<E> const& y) [Function]

returns a tight interval containing the exactx / y.

Hull<D,E> div_by_non_negative(Interval<D> const& x, Interval<E> const& y) [Function]

returns a tight interval containing the exact x / y, under the assumption that y is not empty and is contained
in [0, +o0]. If this assumption does not hold then an exception is signaled.

Hull<D,E> div_by_positive(Interval<D> const& x, Interval<E> const& y) [Function]

returns a tight interval containing the exact x / y, under the assumption that y is not empty and is contained
in (0,+o0]. If this assumption does not hold then an exception is signaled.

Hull<D,E> div_ends(D const& x, E const& y) [Function]

returns a tight interval containing the exact x / y. The function assumes that x and y are finite, and signal an
exception otherwise.

Hull<C,D,E> fma(C const& x, D const& y, E const& z) [Function]
Hull<C,D,E> fma(C const& x, D const& y, Interval<E> const& z) [Function]
Hull<C,D,E> fma(C const& x, Interval<D> const& y, E const& z) [Function]
Hull<C,D,E> fma(C const& x, Interval<D> const& y, Interval<E> const& z) [Function]
Hull<C,D,E> fma(Interval<C> const& x, D const& y, E const& z) [Function]
Hull<C,D,E> fma(Interval<C> const& x, D const& y, Interval<E> const& z) [Function]
Hull<C,D,E> fma(Interval<C> const& x, Interval<D> const& y, E const& z) [Function]

Hull<C,D,E> fma(Interval<C> const&, Interval<D> const&, Interval<E> const&) [Function]
returns a tight interval containing the exactx * y + z.

Hull<D,E> minus_add_ends(D const& x, E const& y) [Function]

returns a tight interval containing the exact -(x + y). The function assumes that x and y are finite, and
signal an exception otherwise.

Hull<D,E> minus_div_ends(D const& x, E const& y) [Function]

returns a tight interval containing the exact -(x / y). The function assumes that x and y are finite, and
signal an exception otherwise.

13

14 CHAPTER 2. REFERENCE

Hull<D,E> minus_mul_ends(D const& x, E const& y) [Function]

returns a tight interval containing the exact -(x * y) . The function assumes that x and y are finite, and
signal an exception otherwise.

Hull<D,E> mul(D const& x, Interval<E> const& y) [Function]
Hull<D,E> mul(Interval<D> const& x, E const& y) [Function]
Hull<D,E> mul(Interval<D> const& x, Interval<E> const& y) [Function]

returns a tight interval containing the exact x * y.

Hull<D,E> mul_ends(D const& x, E const& y) [Function]

returns a tight interval containing the exact x * y. The function assumes that x and y are finite, and signal an
exception otherwise.

Interval<E> neg(Interval<E> const& i) [Function]

returns minus the interval i.

Hull<D,E> operator+(D const& x, Interval<E> const& y) [Operator]
Hull<D,E> operator+(Interval<D> const& x, E const& y) [Operator]
Hull<D,E> operator+(Interval<D> const& x, Interval<E> const& y) [Operator]

returns a tight interval containing the exactx + y.

Interval<D>& operator+=(Interval<D>& x, E const& y) [Operator]
Interval<D>& operator+=(Interval<D> const& x, Interval<E> const& y) [Operator]

This operator is defined when CommonEnd<D,E> = D. It assign X + y to x and returns x.

Hull<D,E> operator-(D const& x, Interval<E> const& y) [Operator]
Hull<D,E> operator-(Interval<D> const& x, E const& y) [Operator]
Hull<D,E> operator-(Interval<D> const& x, Interval<E> const& y) [Operator]

returns a tight interval containing the exactx - y.

Interval<D>& operator-=(Interval<D>%& x, E const& y) [Operator]
Interval<D>& operator-=(Interval<D> const& x, Interval<E> const& y) [Operator]

This operator is defined when CommonEnd<D,E> = D. It assign X - y to x and returns x.

Hull<D,E> operator*(D const& x, Interval<E> const& y) [Operator]
Hull<D,E> operator*(Interval<D> const& x, E const& y) [Operator]
Hull<D,E> operator*(Interval<D> const& x, Interval<E> const& y) [Operator]

returns a tight interval containing the exact x * y.

Interval<D>& operator*=(Interval<D>& x, E const& y) [Operator]
Interval<D>& operator*=(Interval<D> const& x, Interval<E> const& y) [Operator]

This operator is defined when CommonEnd<D,E> = D. It assign x * y to x and returns x.

Hull<D,E> operator/(D const& x, Interval<E> const& y) [Operator]
Hull<D,E> operator/(Interval<D> const& x, E const& y) [Operator]
Hull<D,E> operator/(Interval<D> const& x, Interval<E> const& y) [Operator]

returns a tight interval containing the exactx / y.

Interval<D>& operator/=(Interval<D>%& x, E const& y) [Operator]
Interval<D>& operator/=(Interval<D> const& x, Interval<E> const& y) [Operator]

This operator is defined when CommonEnd<D,E> = D. It assign x / y to x and returns x.

Interval<E> recip(Interval<E> const& i) [Function]

returns a tight interval containing the exact 1.0f / i.

Interval<E> sqr(Interval<E> const& i) [Function]

returns a tight interval containing the exact i * 1i.

Interval<E> sqrt(Interval<E> const& i) [Function]

2.2. CLASS INTERVAL 15

For endpoint types E other than Quad, returns a tight interval containing the exact sqrt(i). For E = Quad
returns a interval which may be slightly larger than the tightest interval containing the exact sqrt (1) (due to
a bug in the quadmath library.)

Hull<D,E> sub(D const& x, Interval<E> const& y) [Function]
Hull<D,E> sub(Interval<D> const& x, E const& y) [Function]
Hull<D,E> sub(Interval<D> const& x, Interval<E> const& y) [Function]

returns a tight interval containing the exactx - y.

Hull<D,E> sub_ends(D const& x, E const& y) [Function]

returns a tight interval containing the exact x - y. The function assumes that x and y are finite, and signal an
exception otherwise.

Interval<E> const& operator+(Interval<E> const& i) [Operator]
returns i.
Interval<E> operator-(Interval<E> const& i) [Function]

returns minus the interval i.

2.2 Class Interval

2.2.1 Constructors for class Interval<E>

Interval<E>() [Constructor]
Creates an empty interval with endpoints of type E, as in
Interval<E> ie; // creates an empty interval
ie = 1.0f; // now ie = [1,1]

ie = Interval<E>(); // now ie becomes empty again

Interval<E>(char const* str) [Constructor]
If str is an interval literal, as described in Section ??, then this constructs builds the corresponding interval.
Otherwise it signals an exception. When the string is too complex this constructor may take a very long time.
For extremely complex strings, it may also cause a memory allocation error, in which case an an exception is
signaled.

Interval<E>(char const* str, Accuracy& a) [Constructor]

If str is an interval literal, as described in Section ??, then this constructs builds the corresponding interval.
Otherwise it signals an exception. On exit, the Accuracy a indicates how accurately the string was converted
to the interval:

e a = Accuracy: :Empty indicates that the string represents an empty interval
e a = Accuracy::Exact indicates that the conversion was exact

e a = Accuracy::Tight indicates that the sup was rounded to the nearest upward number of type E and
inf was rounded to the nearest downward number of type E

When the string is too complex this constructor may take a very long time. For extremely complex strings, it
may also cause a memory allocation error, in which case an an exception is signaled.

Interval<E>(std::string const& str) [Constructor]
The same as Interval<E>(str.c_str()).

Interval<E>(std::string const& str, Accuracy& a) [Constructor]
The same as Interval<E>(str.c_str(),a).

Interval<E>(D const& d) [Constructor]

Requires that there is an exact conversion from endpoints of type D to endpoints of type E and constructs the
interval [d,d] when d is a finite number, and signals an exception otherwise, as in

D d;

Interval<E> ie(d); // constructs the interval [d,d].

Interval<E> ieb(NAN); // error.

Interval<E> iec(INFINITY); // error.

16 CHAPTER 2. REFERENCE

Interval<E>(C const& c, D const& d) [Constructor]

Requires that there is an exact conversion from endpoints of type C and D to endpoints of type E and constructs
the interval [c,d] when c and d are valid, and signals an exception in the cases point out as errors in the next

example
Interval<E> i1(1.0f, 2.0f); // constructs the interval [1,2].
Interval<E> i2(-INFINITY, 2.0f); // constructs the interval [-00,2].

Interval<E> i3(-INFINITY, INFINITY); // constructs the interval [-o0o0,+00].
Interval<E> i4(-INFINITY, -INFINITY); // Error, [-o0o0,-oo] is invalid.
Interval<E> i5(INFINITY, INFINITY); // Error, [+oo,+oo] is invalid.

Interval<E> i6(NAN, NAN) ; // Error, invalid numbers

Interval<E> i7(NAN, 1.0f); // Error, invalid numbers

Interval<E> i8(1.0f, NAN) ; // Error, invalid numbers

Interval<E> i9(2.0f, 1.0f); // Error, numbers out of order
Interval<E>(Interval<D> const& i) [Constructor]

Requires that there is an exact conversion from endpoints D to endpoints E and constructs a copy of the interval
i. This construction signals no exceptions.

2.2.2 Creators for class Interval<E>

By creator we mean an static method of the class Interval<E> which returns an interval.

Interval<E> Interval<E>::after(D const& d) [Creator]
This function assumes that there is an exact conversion from endpoints of type D to endpoints of type E and
returns the interval [d,+oo0], signaling an exception when d is NAN or +oo.

Interval<E> Interval<E>::after_m(D const& d) [Creator]
This function assumes that there is an exact conversion from endpoints of type D to endpoints of type E, and
returns the interval [-d,+oo], signaling an exception when d is NAN or -oo. This function is more efficient
than after.

Interval<E> Interval<E>::after_zero() [Creator]

Returns [0,+o0].

Interval<E> Interval<E>::after_zero(D const& d) [Creator]
This function assumes that there is an exact conversion from endpoints of type D to endpoints of type E and
returns the interval [0,d], signaling an exception when d is NAN or negative.

Interval<E> Interval<E>::before(D const& d) [Creator]
This function assumes that there is an exact conversion from endpoints of type D to endpoints of type E and
returns the interval [-oo0,d], signaling an exception when d is NAN or -oo.

Interval<E> Interval<E>::before_zero() [Creator]

Returns [-00,0].

Interval<D> Interval<C>::center_and_radius(C const& c, R const& r) [Creator]

This function assumes that the operations ¢ +/- r are defined and that their result can be converted exactly
to type E. It returns [rounded_down(c - r), rounded_up(c + r)]. An exception is signaled when c is
not a finite number and when e is not a non negative number.

Interval<E> Interval<E>::entire() [Creator]

Returns the interval [-oo0,+00].

Interval<E> Interval<E>::raw(C const& c, D const& d) [Creator]

This function is the most efficient way to create intervals. It is defined when endpoints of types C and D can be
converted exactly to endpoints of type E. When -c and d define an interval then [-c,d] is returned (Note that
there is a change in the sign of c, that is, ¢ is MINUS the inf of the returned interval.) When -c and d do not
define an interval then an exception is signaled.

2.3. INPUT AND OUTPUT 17

Interval<E>::raw(2.0f, 1.0f); // returns [-2,1]

Interval<E>::raw(NAN, NAN); // returns empty, no exception is signaled
Interval<E>::raw(INFINITY, INFINITY); // returns [-00,+00], no exception is signaled
Interval<E>::raw(INFINITY, 1.0f); // returns [-00,1]. no exception is signaled
Interval<E>::raw(-2.0f, 1.0f); // an exception is signaled, [2,1] is invalid
Interval<E>::raw(NAN, 1.0f); // an exception is signaled, [NAN,1] is invalid

Interval<E>::raw(-INFINITY, INFINITY); // an exception is signaled, [+o00,+o0o0] is invalid
Interval<E>::raw(INFINITY, -INFINITY); // an exception is signaled, [-00,-00] is invalid

Interval<E> Interval<E>::raw_m(D const& d) [Creator]
Creates the interval [-d,-d]. If d is NAN or infinite then a an exception is signaled.

Interval<E> Interval<E>::round(Interval<D> const& id) [Creator]
This function is defined when endpoints of type D can be rounded up and down to endpoints of type E. When
texttti is empty it returns an empty interval. Otherwise it returns [round_down (inf (i)), round_up(sup(i))],
with the convention that

e round_up(+00) = +oo0,

e round_up(-00)

e round_up (NAN)

-oo0,
NAN and empty = [NAN,NAN]),

e for finite d, round_up(d is the least endpoint of type E which is greater than or equal to d (which
may be +00).

e for finite d, round_downd is the greatest endpoint of type E which is less than or equal to d (which may
be -00.)

Interval<E> Interval<E>::symmetric(D const& d) [Creator]

This function is defined when endpoints of type D can be converted exactly to endpoints of type E. If d is non
negative, Interval<E>: :symmetric(d) returns [-d,d], otherwise it signals an exception.

Interval<E> Interval<E>::zero() [Creator]
Returns [0,0].

2.3 Input and output

void clear(Io::Format& f) [Operator]
Assigns the following values to £’s attributes:
precision = 1, width = 0, border_slack = 0, center_slack = 1, number_width =
exp_width = 1, alignment = left, empty = blank, entire = as text, infinity = short,
inf alignment = left, notation = shortest, padding = no, overlap = text,
show_sign = no, sup_alignment = left, text_case = lower_case

I
o

To::Align get_align(Io::Format const& f) [Function]
int get_border_slack(Io::Format const& f) [Function]
int get_center_slack(Io::Format const& f) [Function]
Io::Entire get_entire(Ilo::Format const& f) [Function]
To::Empty get_empty(Io::Format const& f) [Function]
int get_exp_width(Io::Format const& f) [Function]
To::InfAlign get_inf_align(TIo::Format const& f) [Function]
To::Infinity get_infinity(Io::Format const& f) [Function]
int get_number_width(Io::Format const& f) [Function]
To::0verlapStyle get_overlap(Io::Format const& f) [Function]
To::Padding get_padding(Io::Format const& f) [Function]
int get_precision(Io::Format const& f) [Function]
To::SupAlign get_sup_align(Io::Format const& f) [Function]

To::Sign get_sign(Io::Format const& f) [Function]

18 CHAPTER 2. REFERENCE

Io::TextCase get_text_case(lo::Format const& f) [Function]
int get_width(Io::Format const& f) [Function]

gets the corresponding attribute of the Format f. See Table 1.1.

std::string interval_to_exact(Interval<E> const& i) [Operator]
Converts the interval i to a string str such that try_parse(j, str) would make j exactly equal to i.

std::istream& operator»(std::istream& is, Interval<E>& i) [Operator]
Tries to read the interval i from the input stream is. In case of failure an exception is signaled.

std::ostream& operator«(std::ostream& os, Io::Align) [Operator]
std::ostream& operator«(std::ostream& os, Io::BorderSlack) [Operator]
std::ostream& operator«(std::ostream& os, Io::CenterSlack) [Operator]
std::ostream& operator«(std::ostream& os, Io::Entire) [Operator]
std::ostream& operator«(std::ostream& os, Io::Empty) [Operator]
std::ostream& operator«(std::ostream& os, Io::ExpWidth) [Operator]
std::ostream& operator«(std::ostream& os, Io::InfAlign) [Operator]
std::ostream¥& operator«(std::ostream& os, Io::Notation) [Operator]
std::ostream& operator«(std::ostream& os, Io::NumberWidth) [Operator]
std::ostream& operator«(std::ostream& os, Io::0verlapStyle) [Operator]
std::ostream& operator«(std::ostream& os, Io::Padding) [Operator]
std::ostream& operator«(std::ostream& os, Io::Precision) [Operator]
std::ostream& operator«(std::ostream& os, Io::SupAlign) [Operator]
std::ostream& operator«(std::ostream& os, Io::Sign) [Operator]
std::ostream& operator«(std::ostream& os, Io::TextCase) [Operator]
std::ostream& operator«(std::ostream& os, Io::Width) [Operator]

Sets the corresponding attribute of the output stream os, as in Tables 1.1 and 1.2 and the examples below
cout << To::ExpWidth(4); // setting the exponent width to 4 characters

cout << To::HEX; // setting the notation to hexadecimal
cout << To::UPPER_CASE; // setting the text case
cout << To::RIGHT; // right aligning text

cout << To::Width(20); // minimum of 20 characters per interval.

std::ostream& operator«(std::ostream& os, Interval<E> const& ie) [Operator]
Write the interval id from to the output stream os. The output can be formatted using the usual C++ stream
manipulators and also by the several versions of the operator« mentioned below.

Accuracy scan(Interval<E>& i, std::istream& is) [Function]

Accuracy scan(std::vector<Interval<E>& v, std::istream& is) [Function]

The scan functions are similar to the try_scan functions, by they signal an exception in case of error.

void set(Io::Format, Io::Align) [Function]
void set(Io::Format, Io::BorderSlack) [Function]
void set(Io::Format, Io::CenterSlack) [Function]
void set(Io::Format, Io::Entire) [Function]
void set(Io::Format, Io::Empty) [Function]
void set(Io::Format, Io::ExpWidth) [Function]
void set(Io::Format, Io::InfAlign) [Function]
void set(Io::Format, Io::Infinity) [Function]
void set(Io::Format, Io::MumberWidth) [Function]
void set(Io::Format, Io::0verlapStyle) [Function]
void set(Io::Format, Io::Padding) [Function]

void set(Io::Format, Io::Precision) [Function]

2.3. INPUT AND OUTPUT 19

void set(Io::Format, Io::SupAlign) [Function]
void set(Io::Format, Io::Sign) [Function]
void set(Io::Format, Io::TextCase) [Function]
void set(Io::Format, Io::Width) [Function]

Sets the corresponding attribute of the Format f. See Table 1.1.

std::string to_text(Interval<E> const& i, Io::Format const& f) [Function]

returns a string representing the interval according to the given format.

std::string to_text(Interval<E> const& i) [Function]

The same as to_text (i, Io::Format("S")), which writes the interval in the short format.

std::string to_text(Interval<E> const& i, char const* f) [Function]

The same as to_text (i, Io::Format(f)).

std::string to_text(Interval<E> const& i, std::string const& f [Function]
The same as to_text (i, Io::Format(f)).

Accuracy Interval<E> try_parse(Interval<E>& ie, char const* str) [Function]
Accuracy Interval<E> try_parse(Interval<E>& ie, std::string const& str) [Function]

When str is not an interval literal as defined by the IEEE standards, the try_parse functions return Accu-
racy::Invalid. When str is an interval literal, e is set to the corresponding value, and the functions return an
Accuracy which reflects how the string was interpreted in order to yield e. In realistic situations these func-
tions cause no exceptions, but in principle, they may lead to program termination in case the input is so long
or complex that it would lead the GMP library to cause a memory allocation error, and the Moore library takes
no precaution to avoid such outlandish cases.

bool Interval<E> try_parse(Io::Format& f, char const* str) [Function]
bool Interval<E> try_parse(Io::Format& f, std::string const& str) [Function]

If the string is of the form "%0ption’,0Option...%0ption", for the option in the table 1.1 then £ then £ is
cleared, these new options are set and the function returns true. Otherwise, £ is cleared and the function returns
false

Accuracy try_scan(Interval<E>& i, std::istream& is) [Function]
Tries to read one interval from the input stream is. In case of failure returns Accuracy: : Invalid and sets
is’s fail bit. In case of success the returned value indicates the accuray with which the interval was read.

Accuracy try_scan(std::vector<Interval<E>% v, std::istream& is) [Function]

Tries to read all the intervals contained in the input stream is. In case of failure returns Accuracy: : Invalid
and sets is’s fail bit. In case of success the returned value indicates the accuracy with which the least accurate
interval was read.

template <Intervallterator It>
bool try_write(It begin, It end, std::ostream& os) [Function]
template <Intervallterator It>
bool try_write(It begin, It end, std::ostream& os, char const* format) [Function]
template <Intervallterator It>
bool try_write(It begin, It end, std::ostream& os, std::string const& format) [Function]
template <Intervallterator It>
bool try_write(It begin, It end, std::ostream& os, Io::Format const& format) [Function]

bool try_write(std::vector<Interval<E> const& v, std::ostream& os) [Function]
bool
try_write(std::vector<Interval<E> const& v, ostream& os, char const* frmt) [Function]
bool

try_write(std::vector<Interval<E> const& v, ostream& os, string const& frmt) [Function]
bool

try_write(std::vector<Interval<E> const& v, ostream& os, Format const& frmt) [Function]

20 CHAPTER 2. REFERENCE

Tries to write the vectors in the given range to the output stream os, with output formatted according to the
format parameter (when the format is not provide the default value To: :Format ("S") is used. The output can
also be formatted using the operator« described above. Returns true if all intervals are written and false
otherwise.

template <Intervallterator It>

void write(It begin, It end, std::ostream& os) [Function]
template <Intervallterator It>
void write(It begin, It end, std::ostream& os, char const* format) [Function]
template <Intervallterator It>
void write(It begin, It end, std::ostream& os, std::string const& format) [Function]
template <Intervallterator It>
void write(It begin, It end, std::ostream& os, Io::Format const& format) [Function]
void write(std::vector<Interval<E> const& v, std::ostream& os) [Function]

void write(std::vector<Interval<E> const& v, ostream& os, char const* frmt) [Function]
void write(std::vector<Interval<E> const& v, ostream& os, string const& frmt) [Function]
void write(std::vector<Interval<E> const& v, ostream& os, Format const& frmt) [Function]

The write functions are similar to the try_write functions, but they signal an exception in case of error.

2.4 Boolean functions of intervals

bool are_disjoint(Interval<D> const& id, Interval<E> const& ie) [Function]
Indicates whether the intervals id and ie are disjoint.

Interval<E> has_negative(Interval<E> const& i) [Function]
Indicates whether i contains a negative number.

Interval<E> has_non_negative(Interval<E> const& i) [Function]
Indicates whether i contains a non negative number.

Interval<E> has_non_positive(Interval<E> const& i) [Function]
Indicates whether i contains a non positive number.

Interval<E> has_positive(Interval<E> const& i) [Function]
Indicates whether i contains a positive number.

Interval<E> has_zero(Interval<E> const& i) [Function]
Indicates whether O is contained in i.

bool intersect(Interval<D> const& id, Interval<E> const& ie) [Function]
Indicates whether the intersection of the intervals id and ie is empty (this is the same as !are_disjoint (id,ie).)

bool is_bounded(Interval<E> const& i) [Function]
Indicates whether i is bounded, ie., whether it is empty or its upper and lower bounds are finite.

bool is_bounded_above(Interval<E> const& i) [Function]
Indicates whether i is bounded above, ie., whether it is empty or its upper bound is finite.

bool is_bounded_below(Interval<E> const& i) [Function]

Indicates whether i is bounded below, ie., whether it is empty or its lower bound is finite.

bool is_common_interval(Interval<E> const& i) [Function]

Indicates whether i is not empty an has finite upper and lower bounds.

bool is_empty(Interval<E> const& i) [Function]
Returns true if and only if i is empty.

bool is_entire(Interval<E> const& i) [Function]

2.4. BOOLEAN FUNCTIONS OF INTERVALS 21

Returns true if and only if i == [-00,+00].

bool is_interior(D const& id, Interval<E> const& ie) [Function]
Indicates whether the point d is contained in the interior of ie
bool is_interior(Interval<D> const& id, Interval<E> const& ie) [Function]

Indicates whether id is contained in the interior of ie

bool is_less(Interval<D> const& x, Interval<E> const& y) [Function]
Indicates whether id is weakly less than ie, in the sense that for all d in id there exists e in ie such thatd <=
e and for all e in e there exists d in id such thatd <= e.

bool is_member(E const& e, Interval<D> const& i) [Function]

Indicates whether e is contained in i.

bool is_negative(Interval<E> const& i) [Function]

Indicates whether i is not empty and all its elements are negative.

bool is_non_negative(Interval<E> const& i) [Function]

Indicates whether i is not empty and all its elements are non negative.

bool is_non_positive(Interval<E> const& i) [Function]

Indicates whether i is not empty and all its elements are non positive.

bool is_positive(Interval<E> const& i) [Function]

Indicates whether i is not empty and all its elements are positive.

bool is_singleton(Interval<E> const& i) [Function]

Indicates whether i contains just one real number.

bool is_strictly_less(Interval<D> const& x, Interval<E> const& y) [Function]
Indicates whether id is strictly less than ie, in the sense that for all d in id there exists e in ie such that d <
e and for all e in e there exists d in id such thatd < e.

bool is_subset(Interval<D> const& id, Interval<E> const& ie) [Function]

Indicates whether id is contained in ie.

bool is_valid(Interval<E> const& i) [Function]

Returns true if and only if i is valid. This function is used for debug purposes only: except for bugs, the
Moore library does not produce invalid intervals. In fact, if an invalid interval is detected the program should
be interrupted immediately and we ask the user to send us a bug report.

bool is_zero(Interval<E> const& i) [Function]
Indicates whether i == [0,0].

Interval<E>& Interval<E>::operator=(Interval<D> const& id) [Operator]
This function is defined when endpoints of type D can be converted exactly to endpoints of type E, and is used
as in

Interval<E> ie;
Interval<D> id("[1,2]");

ie = id; // now ie becomes [1,2].

Interval<E>& Interval<E>::operator=(D const& d) [Operator]
This function is defined when endpoints of type D can be converted exactly to endpoints of type E, and is used
as in
D d(1.0f)

Interval<E> i;

i=d; // now ie becomes [1,1].
Interval<E>& Interval<E>::operator=(char const* str) [Operator]
Interval<E>& Interval<E>::operator=(std::string const& str) [Operator]

When str is a valid interval literal, operator= assigns the corresponding interval to the object calling the
operator. Otherwise, an exception is signaled, as in the following code:

22 CHAPTER 2. REFERENCE

Interval<E> ij;

i="[1,2]; // now i becomes [1,2].
i = "I’m not an interval"; // an exception is signaled.
bool operator==(Interval<D> const& id, Interval<E> const& ie) [Operator]

Returns true if and only if the intervals id and ie are equal. In particular, two empty intervals are equal to
each other and are different from all non empty intervals.

bool operator==(Interval<D> const& i, E const& e) [Operator]
bool operator==(E const& e, Interval<D> const& i) [Operator]

Returns true if and only if the intervals 1 is equal to [e,e].

bool operator!=(Interval<D> const& x, Interval<E> const& y) [Operator]

bool operator!=(Interval<D> const& x, E const& y) [Operator]

bool operator!=(E const& x, Interval<D> const& y) [Operator]
In the three cases above x != yis equivalentto ! (x == y)

bool precedes(Interval<D> const& x, Interval<E> const& y) [Function]
If either id or id is empty then this function returns true. Otherwise it indicates whether sup(id) <=
inf (ie).

bool precedes(Interval<D> const& x, Interval<E> const& y) [Function]

If either id or id is empty then this function returns true. Otherwise it indicates whether sup (id) < inf(ie).

Interval<E> zero_is_interior (Interval<E> const& i) [Function]

Indicates whether 0 is contained in the interior i.

2.5 Interval functions of intervals

Interval<E> acos(Interval<E> const& i) [Function]

Returns a tight interval which contains acos (x) for all x in 1.

Interval<E> acosh(Interval<E> const& i) [Function]
Returns a tight interval which contains acosh (x) for all x in i.

Interval<E> asin(Interval<E> const& i) [Function]
Returns a tight interval which contains asin(x) for all x in 1.

Interval<E> asinh(Interval<E> const& i) [Function]
Returns a tight interval which contains asinh (x) for all x in i.

Interval<E> atan(Interval<E> const& i) [Function]
Returns a tight interval which contains atan (x) for all x in 1.

Interval<CommonEnd<D,E> > atan2(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns a tight interval which contains atan(d,e) for all d in id and e in ie.

Interval<E> atanh(Interval<E> const& i) [Function]
Returns a tight interval which contains atanh (x) for all x in i.

Interval<E> ceil(Interval<E> const& i) [Function]
Returns a tight interval which contains ceil (x) for all x in 1.

Interval<E> cos(Interval<E> const& i) [Function]

Returns a tight interval which contains cos (x) for all x in i.

Interval<E> cosh(Interval<E> const& i) [Function]

Returns a tight interval which contains cosh(x) for all x in 1.

Interval<E> exp(Interval<E> const& i) [Function]
Returns a tight interval which contains exp (x) for all x in i.

2.5. INTERVAL FUNCTIONS OF INTERVALS 23

Interval<E> exp2(Interval<E> const& i) [Function]
Returns a tight interval which contains exp2 (x) for all x in 1.

Interval<E> expl0(Interval<E> const& i) [Function]
Returns a tight interval which contains exp10(x) for all x in i.

Interval<E> fabs(Interval<E> const& i) [Function]

Returns the interval formed by e for e in texttti. Note that there is no function abs in the Moore library. You
should use fabs instead.

Interval<E> floorInterval<E> const& i) [Function]
Returns a tight interval which contains floor (x) for all x in i.

Interval<E> log(Interval<E> const& i) [Function]
Returns a tight interval which contains log(x) for all x in i.

Interval<E> log2(Interval<E> const& i) [Function]
Returns a tight interval which contains 1log2 (x) for all x in 1.

Interval<E> loglO(Interval<E> const& i) [Function]
Returns a tight interval which contains 1og10 (x) for all x in i.

Interval<E> max(D const& d, Interval<E> const& i) [Function]
Returns a tight interval which contains max (x,d) for all x in i.

Interval<E> max(Interval<D> const& i, E const& e) [Function]
Returns a tight interval which contains max (x,e) for all x in i.

Interval<E> max(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns a tight interval which contains max(d,e) for alld in id and e in ie and .

Interval<E> min(D const& d, Interval<E> const& i) [Function]
Returns a tight interval which contains min(x,d) for all x in i.

Interval<E> min(Interval<D> const& i, E const& e) [Function]
Returns a tight interval which contains min(x,e) for all x in i.

Interval<E> min(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns a tight interval which contains min(d,e) for alld in id and e in ie and .

Interval<E> negative_part (Interval<E> const& i) [Function]
Returns the intersection of i with [-00,0].

Interval<E> positive_part (Interval<E> const& i) [Function]
Returns the intersection of i with [0,+o0].

Hull<D,E> pow(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns a tight interval which contains d"e foralld > 0in id and e in ie. If ie is not empty and d contains
0 then the output contains 0.

Interval<E> pown(Interval<E> const& i, int64_t n) [Function]
Returns a tight interval which contains x"p for all x in i.

Interval<E> round_ties_away(Interval<E> const& i) [Function]

Returns a tight interval which contains r (x) for all x in i, where r is the function which rounds x to the closest
representable integer, with ties broken away from zero.

Interval<E> round_ties_to_even(Interval<E> const& i) [Function]

Returns a tight interval which contains r (x) for all x in i, where r is the function which rounds x to the closest
representable integer, with ties broken to even.

Interval<E> sign(Interval<E> const& i) [Function]

24 CHAPTER 2. REFERENCE

Returns a tight interval which contains sign(x) for all x in i, with sign(x) = 1 forx > 0, with sign(0)
= 0 and with sign(x) = -1forx < 0.

Interval<E> sin(Interval<E> const& i) [Function]
Returns a tight interval which contains sin(x) for all x in i.

Interval<E> tan(Interval<E> const& i) [Function]
Returns a tight interval which contains tan(x) for all x in i.

Interval<E> trunc(Interval<E> const& i) [Function]

Returns a tight interval which contains trunc (x) for all x in i, where trunc is the function that truncates the
fractional part of x.

2.6 Numeric functions of intervals

CommonEnd<D,E> diff (Interval<D> const& id, Interval<E> const& ie) [Function]

Measures the difference of id and ie. When one of the intervals is empty it returns the width of the other
(and the width of empty is zero.) Otherwise, it returns |sup(id) - sup(ie)| + [inf(id) - inf(ie)l,
evaluated rounding up in CommonEnd<D,E>’s arithmetic, with the convention that +oo - +oo O and -oo -
-oo = 0.

CommonEnd<D,E> dist(Interval<D> const& id, Interval<E> const& ie) [Function]

When both intervals id and ie are not empty, dist(id,ie) returns the distance between them rounded up.
When one of them is empty the function returns NAN.

E inf(Interval<E> const& i) [Function]

If 1 is empty then inf returns NAN. Otherwise, it returns the infimum of the interval as a set extended real
numbers, that is, the smallest extended real number which is less than or equal to all e in i. In particular,
inf([entire]) = -oo. As explained in Section ??, when the returned value is zero its sign is undefined.

E mag(Interval<E> const& i) [Function]
When i is not empty mag returns the the supremum of |e| for e in i. When 1 is empty mag returns NAN.

E mid(Interval<E> const& i) [Function]

When i is bounded and not empty mid returns its midpoint rounded to nearest. The others cases are handled
as follows, where a is finite number of type E and M is the largest finite element of E
mid([]) = NAN, mid([-o00,+00]) = 0, mid([-00, al)= -M, mid([0,+o00)] = +M.

E mid_rough(Interval<E> const& i) [Function]

Returns an approximation to mid. It assumes that i is not empty and that d = [sup(i) + inf(i)| is
smallest than the largest finite number of type E (otherwise it signals an exception.) When d does not underflow,
mid_rough differs from mid by at most one ulp. When d is subnormal mid_rough may differ form mid by at
most the size of the smallest subnormal number. Note that in this case the absolute difference is tiny, but the
relative difference may be of order 1.

E mig(Interval<E> const& i) [Function]
When 1 is not empty mid returns the distance of i to zero. When 1 is empty mig returns NAN.

E minf (Interval<E> const& i) [Function]

When 1 is not empty this function returns -inf (i). When i is empty it returns NAN. This function is used for
efficiency reasons. Due to the way in which intervals are represented internally by the Moore library, calling
minf (i) is more efficient than calling inf (i).

E rad(Interval<E> const& i) [Function]
If i is empty then rad returns 0. Otherwise, it returns (sup(i) - inf(i))/2 rounded up.

E sup(Interval<E> const& i) [Function]
If i is empty then sup returns NAN. Otherwise, it returns the supremum of the interval as a set extended real
numbers, that is, the smallest extended real numbers which is greater than or equal to all e in i. In particular,
sup([entire]) = +oo. As explained in Section ??, when the returned value is zero its sign is undefined.

2.7. REVERSE FUNCTIONS 25

E wid(Interval<E> const& i) [Function]
If 1 is empty then wid returns 0. Otherwise, it returns (sup(i) - inf(i)) rounded up.

2.7 Reverse functions

Hull<D,E> abs_rev(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns a tight interval containing the points e in ie such that |e] is in id.

Hull<D,E> cancel_minus(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns a tight interval containing the hull of the union of all intervals ix such that ix + ie is contained
in id. Please note that this definitions may differ from the one used in the IEEE Standard for floating point
arithmetic in cases in which the result is empty or entire.

Hull<D,E> cancel_plus(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns a tight interval containing the hull of the union of all intervals ix such that ix - ie is contained
in id. Please note that this definitions may differ from the one used in the IEEE Standard for floating point
arithmetic in cases in which the result is empty or entire.

Hull<D,E> cosh_rev(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns an interval containing the points e in ie such that cos(e) is in id. The returned interval is usually
not much larger than the tightest interval possible. However, in rare cases the excess may of order one.

Hull<D,E> cosh_rev(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns an interval containing the points e in ie such that cosh(e) is in id. The returned interval may not be
tight, but is usually reasonable.

Hull<D,E> mul_rev(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns a tight interval containing the xs such that there exists d is in id for whichx * disin ie.

Hull<D,E,X>
mul_rev(Interval<D> const& id, Interval<E> const& ie, Interval<X> const& ix) [Function]

Returns an interval containing the points x in ix such that there exists d is in id for whichx * disin ie. This
function usually returns a tight interval, but there are rare cases in which the tightest result would be empty but
it returns an interval formed by a single point.

std::pair<Hull<D,E>, Hull<D,E> >
mul_rev_to_pair(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns a pair of tight intervals containing all points x such that there exists d is in id for which x * d is in
ie.

Interval<E> pown_rev(Interval<E> const& ie, int64_t p) [Function]
Returns a tight interval containing the points x such that x"p is in ie.

Hull<E,X> mul_rev(Interval<E> const& ie, , Interval<X> const& ix) [Function]
Returns an interval containing the points x in ix such that x~d is in ie. This function usually returns a tight
interval, but there are rare cases in which the tightest result would be empty but it returns an interval formed
by a single point.

Hull<D,E> sin_rev(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns an interval containing the points e in ie such that sin(e) is in id. The returned interval is usually
not much larger than the tightest interval possible. However, in rare cases the excess may of order one.

Hull<D,E> sqr_rev(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns a tight interval containing the points e in ie such that x * xisin id.

Hull<D,E> tan_rev(Interval<D> const& id, Interval<E> const& ie) [Function]

Returns an interval containing the points e in ie such that tan(e) is in id. The returned interval is usually
not much larger than the tightest interval possible. However, in rare cases the excess may of order one.

26 CHAPTER 2. REFERENCE

2.8 Set operations

Hull<X1,...XN> hull(X1l const& x1, ... XN const& xn) [Function]

This function is defined when each type XN represents either an endpoint or an interval. It returns the convex
hull of its arguments. The function signals an exception if one of the xi is NAN or an infinite endpoint.

template<RandomAccessIntervallterator It>
typename std::iterator_traits<It>::value_type
hull(It begin, It end) [Function]

The type It represents a random access iterator which iterates on intervals, and the function returns the convex
hull of the range [begin, end).

template<RandomAccessEndIterator It>

Interval< typename std::iterator_traits<It>::value_type >

hull(It begin, It end) [Function]
The type It represents a random access iterator which iterates on endpoints, and the function returns the

convex hull of the range [begin, end). The function signals an exception if one of the elements of the range
is NAN or infinite.

Interval<E> hull(std::vector<Interval<E» const& v) [Function]
Return the convex hull of the intervals in v, and empty when v is empty.
Interval<E> hull(std::vector<E> const& v) [Function]

Return the convex hull of the endpoints in v, and empty when v is empty. The function signals an exception if
one of the elements of v is NAN or an infinite endpoint.

Interval<E> hull(std::vector<Interval<Ey» const* v, int64_t n) [Function]
Whenn > 0, this function returns the convex hull of the intervals v[0],...,v[n-1], whenn = O it returns
[1 and when n < 0 it it signals an exception.

Interval<E> hull(E const* v, int64_t n) [Function]

Whenn > 0, this function returns the convex hull of the endpoints v[0], . ..,v[n-1], whenn = 0 it returns
[1 and when n < 0 it it signals an exception. It also signals an exception if one of the elements of v is NAN or
infinite.

intersection<I1,...IN> hull(Il1 const& i1, ... IN const& in) [Function]
This function returns the intersection of its arguments.
template<Intervallterator It>

typename std::iterator_traits<It>::value_type
intersection(It begin, It end) [Function]

The type It represents an iterator which iterates on intervals, and the function returns the intersection of the
range [begin, end).

Interval<E> intersection(std::vector<Interval<Ey» const& v) [Function]
Return the intersection of the intervals in v, and empty when v is empty.

Interval<E> intersection(std::vector<Interval<E» const* v, int64_t n) [Function]

Whenn > 0, this function returns the intersection of the intervals v[0],...,v[n-1], whenn = 0 it returns
[1 and when n < 0 it it signals an exception.

part_after<D,E> part_after(Interval<D> const& i, E const& e) [Function]
Returns the intersection of i with [e,+oo], when e is NAN. In particular, the function returns i when e ==
-INFINITY and [] when e == INFINITY.

part_after<D,E> part_after(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns id when ie is empty and part_after(id, sup(ie)) when ie is not empty.

part_after<D,E> part_after_m(Interval<D> const& i, E const& e) [Function]
Returns part_after(i,-e), but is slightly more efficient.

part_before<D,E> part_before(Interval<D> const& i, E const& e) [Function]

Returns the intersection of i with [-0o0,e], when e is NAN. In particular, the function returns i when e ==
+INFINITY and [] when e == -INFINITY.

2.9. MISCELLANEOUS FUNCTIONS 27

part_after<D,E> part_before(Interval<D> const& id, Interval<E> const& ie) [Function]
Returns id when ie is empty and part_before(id, inf (ie)) when ie is not empty.

2.9 Miscellaneous functions

Overlap overlap(Interval<D>& ie, Interval<E>& id) [Function]
Returns a member of the enum Overlap indicating how id and ie are positioned with respect to each other.

void swap(Interval<E>& x, Interval<E>& y) [Function]
Swaps the intervals x and y.

28

CHAPTER 2. REFERENCE

Main index

arithmetic, 13
bugs, 11

common mistakes, 11
compilation modes, 4
compliance with IEEE, 10
constructors, 15

creators, 16

decorations, 10

endpoints, 5
exceptions, 9

29

functions for io, 17

how to, 3
hull, 7

input and output, 7
interval literals, 10
intervals, 6
overlap, 8, 9

reference, 13

sign of zero, 11

30

MAIN INDEX

Index of functions

DS TV ottt e 25
BCOS ottt ittt 22
ACOSh. . 22
Add .. 13
add_ends ... 13
Interval<E>::after....................... 16
Interval<E>::after_m..................... 16
Interval<E>::after_zero................. 16
are_disjointol 20
ASAN .. 22
asinh. ... 22
ABAN . .. 22
Atan2. ... 22
atanh. ... 22
Interval<E>::before...................... 16
Interval<E>::before_zero 16
cancel_minusciiiiiiiiiiin... 25
cancel PluS........oitiiiiiiiiiiiiie., 25
CeIl i 22
Interval<E>::center_and_radius......... 16
clearo 17
OB ittt ettt 22
COSM .ttt 22
COSh_TeV ... i 25
COS TV ittt ittt ettt 25
diff ... 24
dist ... 24
Aiv . 13
div_by_non_negative...................... 13
div_by_positive.......... ...l 13
div_endsooiiiiiiii 13
Interval<E>::entire...................... 16
EXD -ttt e 22
exXPlO. .. 23
EXP2 ettt e 23
fabs .. 23
0 oo 23
A 13
get_align......oooiiiiiiiii 17
get_border_slack.................ociinin. 17
get_center_slack..................oiiun. 17

31

get_empty.....cooiiiiii 17
get_entire............. ...l 17
get_exp_width...........oooiiiiiiii.. 17
get_inf_align............ ...l 17
get_infinity i 17
get_number_width.............. 17
get_overlap........coviiiiiiiiniiinen.. 17
get_padding..........ciiiiiiiiii i 17
get_precision................oiiiiiil, 17
get _Sign ... 17
get_sup_align.............oiiiiiiiii., 17
get_text_case...............oiiiiil 17
get_width...........l 18
has_negativel 20
has_non_negative................ 20
has_non_positive................oii. 20
has_non_positive................oiiin. 20
Ras_Zeroooviiiiiiiiiii i 20
hull.. ... 26
Interval<E>() ..o, 15
Interval<E>(char const*) 15
Interval<E>(char const*, Accuracy&)...15
Interval<E>(D const&).................... 15
Interval<E>(D const&, E const&)........ 16
Interval<E>(Interval<D> const&)........ 16
Interval<E>(std::string const&)........ 15
Interval<E>(std::string const&,
Accuracy&) ...l 15
inf oo 24
intersect.......ooiiiiiiiiiiiii 20
intersectioncoviiiiiiiiinii... 26
interval_to_exactoiiiiiiiin... 18
is_bounded..........coiiiiiiii i 20
is_bounded_above.......................... 20
is_bounded_below.......................... 20
is_common_interval 20
IS empPty ot 20
is_entire........ ...l 20
is_interior............., 21
18 _ 1SS it e 21
is_member........... ... il 21
is mnegative..........o.iiiiiiiiiiii., 21
is_non_negative...............l 21
is_negative............ ... ool 21
is_positive.......c.oiiiiiiiiiiiiiii 21

32

is_singletonccooiiiiiiiiiiiiian.. 21
is_strictly_less.........c.coiviiiinnean... 21
is_subset......... ...l 21
is_valid....ooviiiiii 21
1S _ZETO vttt 21
O e et e 23
10gL0 . et 23
0GB 2 e 23
1 1E= P 24
11 PP 23
mid ... 24
mid_rough.......cooiiiiiiiiii 24
Mig .t e 24
MIN ... 23
minf 24
minus_add_ends.............oiiiiiiiii... 13
minus_div_ends..........ol 13
minus_mul_ends..........c...oiiiiiiiina... 14
mul ... 14
MUL_€NndS ...ovvinte i 14
mul_rev_to_pair............ ..., 25
MUL_T@V .ottt 25
0 T=Y - 14
positive_partl 23
OPETATOT .\ttt 14
OPEerator+=.. ...t 14
Interval<E>::operator= 21
OPETraAtor/ .ottt 14
OPETatOT/= . ittt 14
OPETALOr== ... ittt 22
OPErator .. .ot 18
OPETATOT — .ttt ittt 14
OPErALOT == i\ttt 14
operator not = ..., 22
OPETATOTK vttt et tiii e 18
OPETAtLOT™ ..\ttt ettt 14
OPETALOT =ttt 14
OVETLAD .+ttt 27
part_after......... 26
part_after m........ il 26

part_before.........., 26

INDEX OF FUNCTIONS
positive_partt 23
PO ettt ettt e 23
5 P 23
POWIL_TEV .\ttt e iiie et e 25
PrecCedes ...vuii et 22
TAA oottt 24
Interval<E>::raw............oovevnnennn.. 16
Interval<E>::raw_M...........ocveeennnn. 17
TECID . i 14
Interval<E>::round 17
round_ties_away..............coiiiiiion... 23
round_ties_to_even....................... 23
SCAM . ¢ttt ettt 18
SeL L 18
SIgn . o 23
SIn .. 24
SIn_Tev ... 25
T P 14
T i o< P 25
T s P 14
strictly_precedescooo.... 22
SUD . 15
sub_ends ... 15
SUP - vttt ettt e e 24
SWAD « + ettt et e 27
Interval<E>::symmetric 17
AN 24
LAN_TOV ..ttt 25
To_texXt o 19
BLUNC . ottt e 24
By _ParSe ..o 19
BrY_SCaAN .ottt 19
Xy _Write....ooviiiii 19
unary operator—..............coiiiiiiiinnn 15
UNAry Operator+..........c.oeeemueennnnennn 15
Wid .o oo 25
WrABe. oo 20
Interval<E>::Zeroccovvevnunnnn... 17
zero_is_interior............. ...l 22

Index of standard functions

DS 23 11T B G 23
ADSREV . .ttt e 25 mid ... 24
BCOS ottt 22 Mg .o 24
acosh......... 22 MiN .o 23
Add .. e 13 MUL .o 14
asinh. ... 22 mulRevToPaircoovviviinnnnnna..... 25
ASAN .. 22 MULREV . e 25
ALAN . .. 22
AEAN2 . o 22 0= - 14
AtANN. .. 22 numsToIntervaloounen. 16
cancelMinus................................ 25 o) 613 oY o o P 14
cancelPlus...........ooiiiiiiiiiiiii 25 OPerator/ ..ot 14
Ceil i 22 OPETATOT — .ttt 14
convexHull.................coiiiiiiiiinn... 26 OPEratOT™ ...\ttt 14
CO S ettt e 22 OVETLaAD ettt 27
COSM .ttt 22
COShREV ...t e 25 PO et ettt e e e e 23
COSREV. .. 25 POWIL . ettt ettt ettt ettt e e 23
POWNREV 25
disjoint ... 20 PreCedes . ..ottt 22
iV o 13
T 24
empr """"""""""""""""""""" 15 TECIP .ttt 14
ENEIT. . s 16 FOUNATIESAWAY « .o vevoeeeeeeee e 23
EQUAL . ..t e 22 roundTiesToEven 23
1= o 22
€XPL0 . . 23 SIEI et 23
BXP2. it 23 =3« R 24
1 o Yo ¥ ol Tt 23 SIOREV.. oo 25
fma .o 13 SAT cooverere 14
SQTREV. ..t 25
ANF 24 SQTL .o 14
interior ...t 21 strictlylesscooiiiiiiiiiiint 21
intersection.............. .. it 26 strictlyPrecedes.......................... 22
interval_to_exact 18 SUD &« e 15
intervalToTeXto oo 19 Subset. ... 21
isCommonInterval 20 SUD vttt e e e e 24
isMemberiiiiii 21
1SSANELETON. v 21 L 7E-Y ¢ P 24
tanRev.... 25
1SS it e 21 textTolnterval 15
O e e e 23 TIUNC. ..o 24
1010 ot 23
OG22 e 23 unary operator-.........................l 15
MG . oottt 24 Wid ..o 25

33

34

INDEX OF STANDARD FUNCTIONS

Index of types

CommonEnd<ES...>. . ..ot 6 Real<N>. ..
Format........ o e 7 F10at128
Hull<X S, o> 7

Imterval<E> . 6 double.
OVETLaD ot evetete e 8,9 float is special.........................o.
Quadcovii 6 long double........ccoiiiiiiniiineennnn..

35

	Title Page
	The Moore library
	Introduction
	How to use the library
	Compilation modes

	Endpoints
	float is special
	double
	long double
	Quad
	Real<N>
	CommonEnd

	Intervals
	The Hull type

	Input and output
	Accuracy
	Overlap
	Exceptions
	Interval literals
	Compliance with the IEEE Standard for interval arithmetic
	Common mistakes
	Explicit constructions
	Integer constants

	Reporting Bugs

	Reference
	Arithmetic
	Class Interval
	Constructors for class Interval<E>
	Creators for class Interval<E>

	Input and output
	Boolean functions of intervals
	Interval functions of intervals
	Numeric functions of intervals
	Reverse functions
	Set operations
	Miscellaneous functions

	Main Index
	Index of Functions
	Index of Standard Functions
	Index of Types

