
How to Check, While Performing Straightforward

Interval Computations, Whether the Resulting

Function is Continuous, Everywhere Defined,

etc.: Towards Foundations of Decorations

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu

Abstract

One of the main problems of interval computations is, given a function
f(x1, . . . , xn) and n intervals, to find the range

y = f(x1, . . . ,xn) = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

One method of estimating this range is straightforward interval computa-
tions, in which we use the fact that a compiler represents the algorithm
for computing f(x1, . . . , xn) as a sequence of elementary operations (arith-
metic operations and elementary functions), and replace each elementary
operation with numbers by the corresponding operation of interval arith-
metic. In this case, on each computation step, we get an interval. It is
known that the interval Y obtained on the final step is an enclosure, i.e.,
it is contains the desired range y. This result is sometimes called the main
theorem of interval computations.

By itself, the straightforward interval computations method is not a
very good one: the resulting enclosure is often too wide. There exist
much more efficient techniques (such as the mean value form). However,
straightforward interval computation is important, since most efficient
techniques for computing the desired range y use straightforward interval
computations on intermediate steps.

Many implementations of interval techniques include, on each step,
not only the interval, but also one or several bits (called decorations) that
describe whether the resulting function is continuous, everywhere defined,
etc. John Pryce has shown that the main theorem of interval computations
can be extended to such decorated intervals. The purpose of this paper
is to reformulate this result (and its proof) so as to make it as clear as
possible for the most general readers interested in interval computations.

1

1 Interval Computations and Straightforward
Interval Computations: Reminder

Need for interval computations. In many practical situations, we know
the relation y = f(x1, . . . , xn) between quantities x1, . . . , xn and a quantity y.
For example, Ohm’s law says that the voltage y is equal to the product of the
current x1 and the resistance x2. In this example, the dependence f(x1, . . . , xn)
is very simple. In other cases, we have a very complex algorithm for computing
f(x1, . . . , xn) – e.g., in geosciences, we have algorithms that come from solving
the corresponding non-linear partial differential equations.

When we know the exact values of xi, then we can simply use the known
relation to estimate the value of y. In practice, our information about each
quantity xi comes from measurement, and measurement is never absolutely
accurate: the measurement result x̃i is, in general, different from the actual
(unknown) value xi of this quantity. In science and engineering practice, it is
often assumed that we know the probability distribution of measurement errors

∆xi
def
= x̃i −xi. However, in many practical situations, we only know the upper

bound ∆i on the (absolute value of) the measurement error: |∆xi| ≤ ∆i [3]. In
such situations, after we perform the measurement of the i-th quantity, the only
information that we have about the actual value xi is that this value belongs to
the interval

xi = [xi, xi]
def
= [x̃i −∆i, x̃i +∆i].

Different values xi ∈ xi lead, in general, to different values of y = f(x1, . . . , xn).
It is therefore desirable to find the range of possible values of y:

y = f(x1, . . . ,xn)
def
= {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

In this problem, inputs are intervals; because of this, the problem of estimating
the range y is called interval computations; see, e.g., [1] are references therein.

How algorithms are performed inside a computer: reminder. Most
methods for solving the above interval computations problem are based on the
following observation. In a computer, several “elementary” operations are di-
rectly implemented: usually, the basic arithmetic operations (addition, subtrac-
tion, multiplication, division) and several elementary functions such as square
root, logarithms, trigonometric functions, etc.

Every algorithm that we write for a computer is translated (by a compiler)
into a sequence of elementary steps, on each of which the computer applies
one of these elementary operations. For example, when we write an expression
x1 ·(1.0−x1), the computer first computes the constant x2 = 1.0, then computes
an auxiliary value x3 = 1.0 − x1, and then multiplies x1 by x3 resulting in the
desired value x4 = x1 · x3.

In general, we start with the inputs x1, . . . , xn, and with whatever constants
we need in our computations. We will denote the number of these constants by

2

c and the constants themselves by xn+1, . . . , xn+c. Then, we compute interme-
diate results – which will be denoted by xn+c+1, xn+2, . . . , xN – until we reach
the final result xN . Each intermediate result xj is obtained by applying one
of the functions g from the list G of elementary functions to some previously
computed values, i.e., as xj = g(xi1 , . . . , xik) for some i1, . . . , ik < j. Thus, by
an algorithm, we can understand a sequence of such statements. This can be
formally described as follows:

Definition 1. Let G be a finite set whole elements are functions g : IRk → IR
(these functions may be defined only for some k-tuples of real numbers). For
each function g ∈ G, the corresponding value k will be called its arity and denoted
by ar(g).

• By an elementary computation step s, we mean a pair consisting of a
function g ∈ G and a tuple ⟨i1, . . . , ik⟩. consisting of k = ar(g) positive
integers; this step will also be denoted by x = g(xi1 , . . . , xik).

• By an algorithm f , we mean a tuple consisting of:

– a positive integer n (called number of inputs),

– a finite list of real numbers called constants; the number of these
constants will be denoted by c, and the numbers themselves by
xn+1, . . . , xn+c; and

– a sequence of elementary computation steps sn+c+1, sn+2, . . . , sN
for which, for every step sj = ⟨gj , ⟨ij,1, . . . , ij,kj ⟩⟩, all the integers
ij,1, . . . , ij,kj are smaller than j; the j-th step will be also denoted by
xj = gj(xij,1 , . . . , xij,kj

).

Let f = ⟨n, xn+1, . . . , xn+c, sn+1, . . . , sN ⟩ be an algorithm with n inputs, and let
x1, . . . , xn be n real numbers. Then, for each j ≤ N , by the j-th intermediate
result fj, we mean a value that is described by the following inductive definition:

• for j ≤ n+ c, we define fj = xj;

• once the values f1, . . . , fj−1 are defined and j > n+c, we take the j-th com-
putation step xj = gj(xij,1 , . . . , xij,kj

) and define fj as gj(fij,1 , . . . , fij,kj
).

The last (N -th) intermediate result is called the result of applying the algorithm
f to the values x1, . . . , xn; it will be denoted by f(x1, . . . , xn).

Comment. Of course, if a function gj is not defined for the values fij,1 , . . . ,
fij,kj

, then the value fj is not defined – and thus, the following values are

not defined as well. For example, when x1 = 1.0 and x2 = 0.0, the value
x3 = g(x1, x2) = x1/x2 = 1.0/0.0 is undefined. It is worth mentioning that in
the IEEE arithmetic implemented in many computers, the 1.0/0.0 is explicitly
defined as∞; however, we decided not to consider infinities in this text, since the
inclusion of infinite values makes all arithmetic operations much more complex
– and besides, some operations results like ∞−∞ are still undefined.

3

In the above example of computing f(x1) = x1 ·(1.0−x1), the set G of elemen-
tary operations contains two 2-ary functions: subtraction − and multiplication
·. Here, f = ⟨1, 1.0, s3, s4⟩, with a single input n = 1, a single constant x2 = 1.0,
and two elementary computation steps:

• a step s3 of the form x3 = g(x2, x1) = x2 − x1, with g3 = −, i3,1 = 2, and
i3,2 = 1; and

• a step s4 of the form x3 = g(x1, x3) = x1 · x3, with g4 = ·, i4,1 = 1, and
i4,2 = 3.

In this example, the first intermediate result is simply the input f1 = x1, the
second is the constant f2 = x2 = 1.0, the third result is f3 = f2 − f1 = 1− x1,
and the final result is f4 = f1 · f3 = x1 · (1.0− x1).

Straightforward interval computations. Let us assume that for each el-
ementary operation g(x1, . . . , xk) ∈ G, we have an interval enclosure, i.e., a
function G that transforms each tuple of k intervals x1, . . . , xk, into an interval
G(x1, . . . ,xk) that is an enclosure for the range of g on these intervals. For
elementary functions, such enclosure are easy to produce – usually, we can even
compute the exact range.

For example, for elementary arithmetic operations, the corresponding ranges
are described by the following formulas of interval arithmetic. For g(x1, x1) =
x1 + x2, we have

g([x1, x1], [x2, x2]) = [x1, x1] + [x2, x2] = [x1 + x2, x1 + x2].

Similarly, for other arithmetic operations, we have

[x1, x1]− [x2, x2] = [x1 − x2, x1 − x2];

[x1, x1] · [x2, x2] =

[min(x1 · x2, x1 · x2, x1 · x2, x1 · x2),max(x1 · x2, x1 · x2, x1 · x2, x1 · x2)];

[x1, x1]/[x2, x2] = [x1, x1] ·
1

[x2, x2]
,

where
1

[x2, x2]
= [1/x2, 1/x2] if 0 ̸∈ [x2, x2].

For elementary functions, it is also usually possible to compute either the exact
range, or at least a reasonable enclosure for this range; see, e.g., [1].

Then, to find the enclosure for the range y = f(x1, . . . ,xn), we we replace
each elementary operation xj = gj(xij,1 , . . . , xij,kj

) from the algorithm f with

the corresponding interval operation xj = Gj(xij,1 , . . . ,xij,kj
). The “main the-

orem of interval computations” (see, e.g., [1]) states that for each intermediate
result, the interval xj computed by this algorithm encloses the actual range
fj(x1, . . . ,xn) of the corresponding intermediate function fj(x1, . . . , xn).

In particular, for the last step, we conclude that the interval xN computed
on this step is an enclosure for the desired range y = f(x1, . . . ,xn).

4

Comment. The resulting enclosure is often too wide. There exist much more ef-
ficient techniques (such as the mean value form); see, e.g., [1]. However, straight-
forward interval computation is important, since most efficient techniques for
computing the desired range y use straightforward interval computations on
intermediate steps.

Since our objective is to extend the “main theorem of interval computations”,
let us provide exact definitions and the corresponding proof.

Definition 2. Let IIR denote the set of all intervals (including an empty set).
An everywhere defined function G : IIRk → IIR is called an interval extension
of a (maybe partially defined) function g : IRk → IR if for all possible inter-
vals x1, . . . ,xk and for all values x1 ∈ x1, . . . , xk ∈ xk for which the value
g(x1, . . . , xk is defined, we have g(x1, . . . , xk) ∈ G(x1, . . . ,xk).

Comment. This definition is equivalent to requiring that the result
G(x1, . . . ,xk) of the interval extension always contain the range g(x1, . . . ,xn)
of the function g.

Definition 3. Let G be a finite set of functions g : IRk → IR; for each
of these functions g, we have an interval extension G : IIRk → IIR. Let
f = ⟨n, xn+1, . . . , xn+c, sn+1, . . . , sN ⟩ be an algorithm with n inputs, and let
x1, . . . ,xn be n real numbers. Then, for each j ≤ N , by the j-th intermediate
result fj, we mean a value that is described by the following inductive definition:

• for j ≤ n, we define fj = xj;

• for n+ 1 ≤ j ≤ n+ c, we define fj = [xj , xj];

• once the intervals f1, . . . , fj−1 are defined and j > n + c, we take
the j-th computation step xj = gj(xij,1 , . . . , xij,kj

) and define fj as

Gj(fij,1 , . . . , fij,kj
).

The last (N -th) intermediate result is called the result of applying straightfor-
ward interval computations to the problem of estimating the range f(x1, . . . ,xn);
this result will be denoted by F(x1, . . . ,xn).

Example. Let us illustrate this definition on the example of computing the
range of the function f(x1) = x1 · (1.0 − x1) on the interval x1 = [0.0, 1.0].
In this case, for both elementary arithmetic operations g = − and g = ·, the
corresponding interval extension is described above. Here, f = ⟨1, 1.0, s3, s4⟩,
with a single input n = 1, a single constant x2 = 1.0, and two elementary
computation steps:

• a step s3 of the form x3 = g(x2, x1) = x2 − x1, with g3 = −, i3,1 = 2, and
i3,2 = 1; and

5

• a step s4 of the form x3 = g(x1, x3) = x1 · x3, with g4 = ·, i4,1 = 1, and
i4,2 = 3.

In this example:

• the first intermediate result is simply the input f1 = x1 = [0.0, 1.0],

• the second is the constant f2 = [x2, x2] = [1.0, 1.0],

• the third result is

f3 = f2 − f1 = [1.0.1.0]− [0.0, 1.0] = [1.0− 1.0, 1.0− 0.0] = [0.0, 1.0];

• the final result is

f4 = f1 · f3 = [0.0, 1.0] · [0.0, 1.0] =

[min(0.0·0.0, 0.0·1.0, 1.0·0.0, 1.0·1.0),max(0.0·0.0, 0.0·1.0, 1.0·0.0, 1.0·1.0)] =

[min(0.0, 0.0, 0.0, 1.0),max(0.0, 0.0, 0.0, 1.0)] = [0.0, 1.0].

Let us compare this result with the actual range., According to calculus, the
minimum and the maximum of a differentiable function on an interval are at-
tained either at one of the endpoints, or an internal point – in which case
df

dx1
= 0. Thus, to find the minimum and the maximum of a function on a

given interval, it is sufficient to compute its value on both endpoints and on all
the internal points where the derivative is 0: the smallest of these values is the
desired minimum, and the largest of these values is the desired maximum.

For the function f(x1) = x1 · (1.0−x1), the derivative is
df

dx1
= 1−2x1, so it

is equal to 0 when x1 = 0.5. Thus, to find the actual range, we need to compute
three values: f(0.0) = 0.0, f(1.0) = 0.0, and f(0.5) = 0.25. The smallest of
these three values is 0.0, the largest is 0.25, so the actual range is y = [0.0, 0.25].
We see that the result [0.0, 1.0] of straightforward interval computations encloses
this range (and also that it has “excess width” in comparison with the actual
range). Let us describe the proof that this is always the case.

Proposition 1. For every algorithm f with n inputs and for every tuple x1,
. . . , xn, the result Y of applying straightforward interval computations encloses
the range y = f(x1, . . . ,xn).

Proof. To prove this proposition, let us first prove the following two lemmas:

Lemma 1. Let g : IRk → IR be a function, let G : IIRk → IIR its interval
extension, let X1, . . . , Xn be intervals, and let x1 ∈ X1, . . . , xn ∈ Xn be
numbers. Then,

g(x1, . . . , xn) ∈ G(X1, . . . ,Xn).

6

Proof of Lemma 1. By definition of the range, the fact that x1 ∈ X1, . . . ,
and xn ∈ Xn implies that value g(x1, . . . , xn) belongs to the range:

g(x1, . . . , xn) ∈ g(X1, . . . ,Xn).

By definition of an interval extension, we conclude that

g(X1, . . . ,Xn) ⊆ G(X1, . . . ,Xn),

i.e., that the range is a subset of the result of applying the interval extension.
An element of a subset is also an element of the set itself. The Lemma is proven.

Lemma 2. For every algorithm f with n inputs, for every tuple x1, . . . ,
xn, and for every j, the j-th intermediate result fj of applying straightforward
interval computations encloses the range yj = fj(x1, . . . ,xn) of the function
fj(x1, . . . , xn) describing the j-th intermediate result.

Proof of Lemma 2. This lemma can be easily proven by induction. The
base case is j ≤ n+ c, when, by definition of the j-result, it coincides with the
desired range.

The induction case is j > n + c. In this case, xj = gj(xij,1 , . . . , xij,kj
) and

fj = Gj(fij,1 , . . . , fij,kj
). By induction, we assume that the lemma holds for all

previous intermediate results ij,ℓ < j. In particular, this means that for every
ℓ, for all possible values x1 ∈ x1, . . . , xn ∈ xn, we have:

fij,ℓ(x1, . . . , xn) ∈ fij,ℓ .

Thus, by Lemma 1, we have

fj(x1, . . . , xn) = gj(fij,1 , . . . , fij,kj
) ∈ Gj(fij,1 , . . . , fij,kj

) = fj .

So, every possible value of fj belongs to the interval fj . This means that the
interval fj encloses the range yj = fj(x1, . . . ,xn) of the function fj(x1, . . . , xn).
The lemma is proven.

Proof of the Proposition itself. By definition, the result of the straight-
forward interval computations is the N -th intermediate result; thus, the propo-
sition follows from Lemma 2 for j = N .

2 Checking Continuity etc.: Decorations

Need for checking. Some elementary functions are continuous everywhere
they are defined: e.g., all arithmetic operations. Some elementary functions
have points of discontinuity: e.g., a function ⌊x⌋ (that returns the integer part
of a given real number x):

• is equal to 1.0 for all the values x from the semi-closed interval [1.0, 2.0),

7

• but for x = 2.0, its value “jumps” from 1.0 to 2.0.

Similarly, some elementary functions are everywhere defined, e.g, addition,
substraction, and multiplication. On the other hand, division g(x1, x2) = x1/x2

is not defined when x2 = 0.
It is therefore desirable to check whether the function f(x1, . . . , xn) com-

puted by an algorithm is continuous and/or everywhere defined.

Idea of decorations. For this checking, some implementations of interval
computations use the following idea: on each step of straightforward interval
computations, we compute not only the interval, but also one or several bits
(called decorations) that describe whether the resulting function is continuous,
everywhere defined, etc. The corresponding tuple consisting of the interval and
these decoration bits is called a decorated interval. The interval part is computed
the same way as before.

What we do in this paper. John Pryce has shown [2] that the main theo-
rem of interval computations can be extended to such decorated intervals. The
purpose of this paper is to reformulate this result (and its proof) so as to make
it as clear as possible for the most general readers interested in interval compu-
tations. Let us start with the case of continuity.

Definition 4. Let G be a finite set of functions g : IRk → IR; for each of these
functions g, we have:

• an interval extension G : IIRk → IIR, and

• a function contg : IIRk → {0, 1} such that if contg(x1, . . . ,xk) = 1
(= “true”), then the function g(x1, . . . , xk) is continuous at every point
(x1, . . . , xk) ∈ x1 × . . .× xk.

Let f = ⟨n, xn+1, . . . , xn+c, sn+1, . . . , sN ⟩ be an algorithm with n inputs, and let
x1, . . . ,xn be n real numbers. Then, for each j ≤ N , by the j-th intermediate
result ⟨fj , cj⟩, we mean a tuple consisting of an interval and a boolean value
which is described by the following inductive definition:

• for j ≤ n, we define fj = xj and cj = 1;

• for n+ 1 ≤ j ≤ n+ c, we define fj = [xj , xj] and cj = 1;

• once the intervals f1, . . . , fj−1 are defined and j > n+ c, we take the j-th
computation step xj = gj(xij,1 , . . . , xij,kj

) and define

fj = Gj(fij,1 , . . . , fij,kj
);

cj = contgj (fij,1 , . . . , fij,kj
)& cij,1 & . . . & cij,kj

.

8

The last (N -th) intermediate result is called the result of applying straightfor-
ward interval computations to the problem of estimating the range f(x1, . . . ,xn);
this result will be denoted by

⟨F(x1, . . . ,xn), contf (x1, . . . ,xn)⟩.

Comment. Since the intervals fj are computed exactly the same way as before,
we know that the resulting interval F(x1, . . . ,xn) is an enclosure. Thus, all we
need to do is to describe the meaning of the additional bit:

Proposition 2. For every algorithm f with n inputs and for every tuple
x1, . . . , xn, if the resulting bit contf (x1, . . . ,xn) is true, then the function
f(x1, . . . , xn) is continuous at every point from the box x1 × . . . × xn at which
it is defined.

Comment. In Proposition 1, we proved, in effect, that every possible value
of y = f(x1, . . . , xn) is contained in the result Y of straightforward interval
computations. We also had an example when the inverse is not true: there are
some values from the result which are not possible values of y = f(x1, . . . , xn)
for xi ∈ xi.

Similarly here, the fact that the bit is false (= 0) does not necessarily mean
that the function is discontinuous. For example, the function f(x) = ⌊x − x⌋
defined on the interval [0, 1] is constant (= 0) for all x and thus, continuous. On
the other hand, when we perform straightforward interval computations with
decorations, we get x2 = x1 − x1, x3 = ⌊x2⌋, which leads to f2 = [0, 1]− [0, 1] =
[−1, 1]. Since the integer part function is not everywhere continuous on the
interval [−1, 1], the above algorithm returns the false value of the continuity
bit.

Proof of Proposition 2. Similarly to Proposition 1, we can prove this propo-
sition by induction. For j ≤ n + c, all the functions are either projections (for
j ≤ n or constants – in both cases, they are continuous.

Let us assume that we have proved it for all intermediate values < j. Let us
prove it for the j-th result xj = gj(xij,1 , . . . , xij,kj

). According to our pro-

cedure, the only case when the j-th continuity bit is true is when the bit
contgj (fij,1 , . . . , fij,kj

) is true. In this case, by definition of contg, the func-

tion gj(xij,1 , . . . , xij,kj
) is continuous for all possible values xij,1 ∈ fij,1 , . . . ,

xij,kj
∈ fij,kj

. Since we have proven, in Lemma 2, that for xi ∈ xi, all possible

values of xij,ℓ belong to the set fij,ℓ , we thus conclude that gj is always continu-
ous on the possible values. By induction assumption, we already know that the
functions fij,ℓ(x1, . . . , xn) are continuous on the given box x1 × . . .× xn. Since
composition of continuous functions is continuous, the function

fj(x1, . . . , xn) = gj(fij,1(x1, . . . , xn), . . . , fij,kj
(x1, . . . , xn))

9

is also continuous on this box. The proposition is proven.

Application to connectedness. Let us describe a situation in which proving
continuity may be important. In addition to knowing the interval xi of possible
values for each i, we may know some relation between the variables: e.g., we may
know that x1 + x2 ≤ 1.0. In general, we may know the set X ⊆ x1 × . . . × xn

of possible values of the tuple (x1, . . . , xn). In this case, we are interested
in learning about the range {f(x1, . . . , xn) : (x1, . . . , xn) ∈ X}. Since X ⊆
x1 × . . . × xn, this range is contained in the range f(x1, . . . ,xn) and thus,
contained in the result Y of straightforward interval computations.

If the function f(x1, . . . , xn) is continuous, then we can provide more in-
formation about the desired range. For example, if the set X is connected (in
the usual topological sense of this word, that it cannot be partitioned into two
nonempty subsets with disjoint closures), then its range is also connected – and
is, thus, an interval.

Beyond continuity. The only property of continuity that we used in the
above proof is that the composition of continuous functions is continuous. Thus,
similar results hold for every property that is preserved under composition: e.g.,
for the property of being differentiable, for the property of being everywhere
defined on a given box, etc.

One important property is the property of being everywhere defined on a box.
This property is often implicitly assumed. For example, in control, stability is
often described in terms of inequalities on the eigenvalues of the corresponding
matrices – with the implicit understanding that the formulas describing these
eigenvalues are everywhere defined. In the simplified example, if we need to

check that the condition y
def
= f(x) =

√
x ≤ 1.0 holds for all x ∈ [x, x], then a

seemingly natural idea is to find the range of y

[y, y] = {
√
x : x ∈ [x, x]}

and then to check whether y ≤ 1.0. This works if the function f(x) is everywhere
defined on the interval [x, x]. However, e.g., for [x, x] = [−1, 1], the above-
described range is [0, 1], so y = 1.0 ≤ 1.0. At first glance, it may seem that
the desired condition is satisfied, but in reality, it is not satisfied – because for
values x ∈ [−1, 0] ⊆ [−1, 1], the function f(x) =

√
x is not defined.

Because checking whether a function is everywhere defined is important, let
us explicitly describe the corresponding result.

Definition 5. Let G be a finite set of functions g : IRk → IR; for each of these
functions g, we have:

• an interval extension G : IIRk → IIR, and

• a function defg : IIRk → {0, 1} such that if defg(x1, . . . ,xk) = 1
(= “true”), then the function g(x1, . . . , xk) is defined at every point
(x1, . . . , xk) ∈ x1 × . . .× xk.

10

Let f = ⟨n, xn+1, . . . , xn+c, sn+1, . . . , sN ⟩ be an algorithm with n inputs, and let
x1, . . . ,xn be n real numbers. Then, for each j ≤ N , by the j-th intermediate
result ⟨fj , dj⟩, we mean a tuple consisting of an interval and a boolean value
which is described by the following inductive definition:

• for j ≤ n, we define fj = xj and dj = 1;

• for n+ 1 ≤ j ≤ n+ c, we define fj = [xj , xj] and dj = 1;

• once the intervals f1, . . . , fj−1 are defined and j > n+ c, we take the j-th
computation step xj = gj(xij,1 , . . . , xij,kj

) and define

fj = Gj(fij,1 , . . . , fij,kj
);

dj = defgj (fij,1 , . . . , fij,kj
)& dij,1 & . . . & dij,kj

.

The last (N -th) intermediate result is called the result of applying straightfor-
ward interval computations to the problem of estimating the range f(x1, . . . ,xn);
this result will be denoted by

⟨F(x1, . . . ,xn),deff (x1, . . . ,xn)⟩.

Proposition 3. For every algorithm f with n inputs and for every tuple
x1, . . . , xn, if the resulting bit deff (x1, . . . ,xn) is true, then the function
f(x1, . . . , xn) is defined everywhere on the box x1 × . . .× xn.

A similar result holds when we take into account that sometimes, functions
are nowhere defined on boxes. For example, the square root is nowhere defined
on the interval [−2.0,−1.0].

Definition 6. Let G be a finite set of functions g : IRk → IR; for each of these
functions g, we have:

• an interval extension G : IIRk → IIR, and

• a function defg : IIRk → {0, 1} such that if nowhereg(x1, . . . ,xk) = 1
(= “true”), then the function g(x1, . . . , xk) is not defined at any point
(x1, . . . , xk) ∈ x1 × . . .× xk.

Let f = ⟨n, xn+1, . . . , xn+c, sn+1, . . . , sN ⟩ be an algorithm with n inputs, and let
x1, . . . ,xn be n real numbers. Then, for each j ≤ N , by the j-th intermediate
result ⟨fj , nj⟩, we mean a tuple consisting of an interval and a boolean value
which is described by the following inductive definition:

• for j ≤ n, we define fj = xj and nj = 1;

• for n+ 1 ≤ j ≤ n+ c, we define fj = [xj , xj] and nj = 1;

11

• once the intervals f1, . . . , fj−1 are defined and j > n+ c, we take the j-th
computation step xj = gj(xij,1 , . . . , xij,kj

) and define

fj = Gj(fij,1 , . . . , fij,kj
); nj = nowheregj (fij,1 , . . . , fij,kj

).

The last (N -th) intermediate result is called the result of applying straightfor-
ward interval computations to the problem of estimating the range f(x1, . . . ,xn);
this result will be denoted by

⟨F(x1, . . . ,xn),nowheref (x1, . . . ,xn)⟩.

Proposition 4. For every algorithm f with n inputs and for every tuple x1,
. . . , xn, if the resulting bit nowheref (x1, . . . ,xn) is true, then the function
f(x1, . . . , xn) is not defined anywhere on the box x1 × . . .× xn.

Comment. We assumed that computations of the intervals fj are not affected
by the computations of the corresponding bits. However, for nowhere-defined
bits, it may be beneficial to take the bits into account when computing intervals.
Indeed, if a function describing the j-th intermediate result is nowhere defined,
then its range is empty. So, we arrive at the following modification of the above
procedure:

Definition 7. Let G be a finite set of functions g : IRk → IR; for each of these
functions g, we have:

• an interval extension G : IIRk → IIR, and

• a function defg : IIRk → {0, 1} such that if nowhereg(x1, . . . ,xk) = 1
(= “true”), then the function g(x1, . . . , xk) is not defined at any point
(x1, . . . , xk) ∈ x1 × . . .× xk.

Let f = ⟨n, xn+1, . . . , xn+c, sn+1, . . . , sN ⟩ be an algorithm with n inputs, and let
x1, . . . ,xn be n real numbers. Then, for each j ≤ N , by the j-th intermediate
result fj, we mean an interval maybe empty) which is described by the following
inductive definition:

• for j ≤ n, we define fj = xj;

• for n+ 1 ≤ j ≤ n+ c, we define fj = [xj , xj];

• once the intervals f1, . . . , fj−1 are defined and j > n+ c, we take the j-th
computation step xj = gj(xij,1 , . . . , xij,kj

) and define:

fj = ∅ if nowheregj (fij,1 , . . . , fij,kj
) = 1 otherwise fj = Gj(fij,1 , . . . , fij,kj

).

The last (N -th) intermediate result is called the result of applying straightfor-
ward interval computations to the problem of estimating the range f(x1, . . . ,xn);
this result will be denoted by F(x1, . . . ,xn).

12

Proposition 5. For every algorithm f with n inputs and for every tuple x1,
. . . , xn, the result Y of applying the above procedure encloses the range y =
f(x1, . . . ,xn).

References

[1] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM Press, Philadelphia, Pennsylviania, 2009.

[2] J. Pryce, Motion to Propose a “Discontinuous” Decoration Bit. Version 3,
Motion 22, IEEE Interval Standard Working Group P1788, 2010.

[3] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Prac-
tice, Springer Verlag, New York, 2005.

13

