
�De�ned and Continuous�or �Discontinuous�
To Be or Not To Be

Nate Hayes
Sun�sh Studio, LLC

October 3, 2010

Abstract

The de�nition of a decoration bit that veri�es continuity is currently
on the table for debate and discussion in the P1788 forum. This paper
proposes that P1788 should standardize this decoration bit in the a¢ rma-
tive, i.e., �de�ned and continuous,�as opposed to the counter-a¢ rmative,
i.e., �discontinuous.�

1 Introduction

This paper is a proposal to amend a proposal. Currently on the table for debate
and discussion in the P1788 forum is a motion to propose a �discontinuous�
decoration bit [4].
It is hereby respectfully submitted that P1788 should instead standardize

the bit in the a¢ rmative as a �de�ned and continuous�decoration.

2 Proposed Amendment

The motion [4] shall be amended to propose standardization of a �de�ned and
continuous� decoration bit instead of the currently proposed �discontinuous�
decoration bit as follows:

� Clause 3.1.1 of [4] provides a �de�ned and continuous�predicate C(f ;X)
for a real function f and interval box X, and this shall not be changed
except to note the �de�ned and continuous�bit aims to track this predi-
cate.

� Line 5 of Clause 3.1.2 shall be amended to remove the logical negation (:)
sign before the C predicate.

� Line 7 of Clause 3.1.2 shall be amended to change the logical disjunction
(_) signs to logical conjunction (^) signs.

1

� Line 6 of Clause 3.1.3 shall be amended to change the logical disjunction
(_) sign to a logical conjunction (^) sign.

� The remainder of the motion text shall be amended as deemed necessary
by the good judgement of the author so as to be consistent and logically
coherent with the above changes.

3 Rationale

It is acknowledged that individuals have their own personal taste and style. For
example, when writing a software program it may be largely a matter of taste
wether one should write

if (isDiscontinuous(X)) // Handle "bad thing" here

or

if (!isDefinedAndContinuous(X)) // Handle "bad thing" here

It should also be recognized that both the proposed motion and respective
amendments are entirely Level 1 and Level 2 de�nitions, so regardless of the
outcome vendors and implementors will likely have the freedom at Level 3 and
Level 4 to choose any internal representation they wish, so long as the overall
behavior ultimately conforms to the Level 1 and Level 2 de�nitions and require-
ments.
It is therefore suggested that the focus of the debate should be centered on

principles of uniformity and consistency in the �public interface.�The purpose
to do this is to present in the end a standard that exposes to the rest of the
world a design that has rational and consistent justi�cations for its choices.
When examining issues of consistency, the view of this paper is that �de�ned

and continuous�is the choice that can be best supported.

3.1 Reasons for �discontinuous�

One of the good arguments I�ve heard in favor of �discontinuous�is that the dec-
oration bit is set to �true�when the �bad thing,� i.e., a discontinuity, occurs,
and that this methodology is consistent with practices in IEEE 754 wherein
exceptional conditions such as �under�ow�or �over�ow�are �agged in the af-
�rmative.
By itself, this concept has merit. However, when taken into consideration

alongside all the reasons of consistency in favor of �de�ned and continuous�
(explained next), the merit of this choice is overshadowed and superseded, in
my opinion.

2

3.2 Reasons for �de�ned and continuous�

One of the primary points of emphasis in [4] is that of simplicity and consistency.
This is emphatically underscored (in all its appropriateness) by the quote from
George Corliss:

If folks of OUR experience have trouble understanding, God help
the casual user! We have been, and we must continue to be, sensitive
to KISS. I guess one path to simplicity is a very carefully worked-
out, consistent, and coherent level model. That is WE work very
hard so that the result is easy. I�m OK with that, as long as the
result is easy.

The bolded emphasis is mine. In my view, these are some good reasons
why considering if a decoration bit is to be �de�ned and continuous� or �dis-
continuous�should not be left up to matters of chance or personal taste. It is
also why I don�t see it should be viewed as useless �nit-picking�to raise such a
fuss about what might otherwise be seen by some outsider as quite a minor or
insigni�cant topic. So it is in this spirit of George�s comments why the whole
question of what this decoration bit represents is a serious subject to me, and
why the proposed amendment is part of my own contribution to what I see as
us working �very hard so that the result is easy.�
As illustrated already in section 3.1.1 of the motion, the �natural�Level 1

predicate of the decoration bit in question is �de�ned and continuous,�wherein
propagations or �accumulations�of this bit are performed by logical conjunction
(^). The Level 2 de�nition proposed in Line 5 of section 3.1.2 introduces an
extra (unnecessary) logical negation (:), and this in turn requires propagation of
the decoration bit by logical disjunction (_). These facts alone are evidence the
de�nitions are not the �most simple�and that KISS is not being followed. From
a mathematical perspective there is no reason of necessity or justi�cation for
any of this, so in my view it can lead the uninitiated to scratch their heads and
ask �why did they de�ne it that way?�or �am I missing something important
here?�or �is there really some important reason for that?�Even as an initiate,
this was my initial response. I took away from this experience a belief that it
will be enough to confound other users, implementors, and authors alike.
The proposed motion is not entirely consistent about the use of �discontin-

uous� and switches back-and-forth at times, which I think is further evidence
that �discontinuous�is not truly the �most simple�or �natural�choice even for
purposes of pedagogy.
The �de�ned and continuous�property is an important concept in mathe-

matics, and many fundamental theorems are predicated on the existence of this
property. Students are taught this in Calculus. For example, the following is a
de�nition of the Mean Value Theorem from a typical college textbook [3]:

Theorem 1 (Mean Value Theorem) If f is de�ned and continuous on
[a; b] and di¤erentiable on (a; b), then there exists a number c, with a < c < b,

3

such that

f 0(c) =
f(b)� f(x)
b� a .

In other words, f(b)� f(a) = f 0(c)(b� a).

The bolded emphasis is mine. Note that the theorem is not given in terms
of double negatives, e.g., �if f is not discontinuous...�What, therefore, is the
motivation for P1788 to not follow these pedagogical conventions? In my view,
this is an important choice of consistency. I think it would be inconsistent
for P1788 to promulgate �discontinuous� as a pedagogical tool when just the
opposite is already the norm. It seems this would require further rationale,
explanation, and justi�cation (which is not present in the current motion). But
this would stray even further from the KISS principle.
Another relevant concern relates to exception-handling semantics found in

many popular programming languages. In C++, for example, there is the �try-
catch�exception-handling mechanism. The �natural�form of these statements
is that the user will �try� some lengthy computation and code in the �catch�
clause will automatically be invoked by the run-time system if and only if some
exceptional condition is encountered, i.e.:

try {
// User begins some lengthy computation...
// ...and the end of the "try" block gets reached
// only if there are no exceptional conditions

} catch (...) {
// This code will get invoked by the run-time system
// if and only if an exceptional condition occurs

}

Implicit in this �try-catch� mechanism is an assumption that the �good
thing� occurs in the �try� block and the �bad thing� occurs in the �catch�
block. If P1788 standardized �discontinuous,� this mechanism will still work.
However, users and implementors should then think in terms of double-negatives
akin to the �if f is not discontinuous...�example given above. In other words,
users and implementors will have to change their thinking and consider that
�not the bad thing�occurs in the �try�block. This is still functional, but not
the �most simple,�and almost certainly not what users are used to. The reason
I believe this particular example doesn�t fall into the category of a �personal
preference�is that like the Mean Value Theorem example described above, these
types of exception-handling mechanisms (and all the assumptions that go along
with them) are already institutionalized and pervasive.
Perhaps the biggest argument in favor of consistency, however, is that P1788

should be consistent with itself. Viewed in terms of the multi-valued logic of [1],
the domain tetrit in [2] propagates via logical conjunction (^), or in�mum. The
proposed �discontinuous�bit, however, would propagate via logical disjunction
(_), or supremum (as indicated in sections 3.1.2 and 3.1.3).

4

This inconsistent state of a¤airs would be the result of the proposed de�ni-
tion for �discontinuous,�which tracks a �bad thing,�as opposed to the de�nition
of the domain tetrit, which tracks a �good thing,�e.g., �is the function de�ned
for its operands.� The net e¤ect would be a P1788 standard that uses oppo-
site logical conventions to de�ne and propagate two di¤erent decorations... the
ultimate sin of inconsistency, in my view.
Some might ask the question: �why not simply negate the de�nition of the

domain tetrit, then, so it will be consistent with the discontinuous bit?�This is
a very good question, and I have also considered it. But my answer is simple:
because it makes a bad situation worse. There are many arguments of consis-
tency against the �discontinuous� bit already, and the same arguments apply
to negation of the domain tetrit as well.
The advanced reader might also have noticed that simply �negating� the

Level 1 de�nition of a domain tetrit does not really change its de�nition! If
propagating a tetrit via logical disjunction (_) or supremum is really desired,
this might require using universally-quali�ed propositions in the Level 1 de�n-
ition instead. When originally writing Motion 18, it was an intentional choice
for me not to do this. The reason to avoid universally-quali�ed propositions
was because they can cause vacuously true statements when an empty set is
involved, and discussions in the P1788 forum have shown that the subject of
vacuous truth can be tricky even for experts, lest the uninitiated or less ex-
perienced. So it was adherence to the KISS principle that made me choose
existential quanti�cations for the domain tetrit in the �rst place.
A �nal argument that has been made along these lines is to change the

tetrit ranking priority value R to 3 � R and then take the supremum of two
tetrit values. The domain tetrit will then be consistent with the discontinuous
bit (which uses disjunction). The reason not to do this is because the IEEE
1788 de�nition of a tetrit will then no longer be compatible with the proposed
C++ bool_set [1] standard. For example, the supremum of two tetrits is:

sup 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

but the disjunction (_) of two bool_set values is:

_ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

Only the in�mum between two tetrits is the same as the conjunction (^) between
two bool_set values, i.e., in both cases the result is:

5

i/c 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

So if P1788 wishes the following to be true:

� The propagation of all decorations shall be handled uniformly, i.e., with
conjunction/in�mum or disjunction/supremum (but not some wild com-
bination of both)

� The IEEE 1788 de�nition of a tetrit shall be compatible with the proposed
C++ bool_set standard [1]

Then the only choice is to accept the current de�nition of a tetrit [2] and
standardize �de�ned and continuous�as opposed to �discontinuous.�

References

[1] Bronnimann, H. et. al., �Bool_set: multi-valued logic,� http://www.open-
std.org/JTC1/sc22/wg21/docs/papers/2006/n2046.pdf

[2] Hayes, N., �Trits to Tetrits,�P1788 Motion 18, May 28, 2010.

[3] Hughes-Hallet, Gleason, McCallum, et. al., �Single Variable Calculus, Third
Edition,�John Wiley & Sons, Inc., 2002.

[4] Pryce, J., �Motion to propose a �discontinuous�decoration bit, Version 3,�
Sept. 11, 2010.

6

