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1. MOTION TITLE AND AUTHORS

Motion: P1788/M0006.04_Level 2_Multi-format
Proposer: John Pryce.
Seconder: Dan Zuras

2. MOTION TEXT
P1788 shall support multiple-format interval arithmetic. Specifically:

2.1. The terms interval format, interval datum etc., shall have the meanings given in the
Definitions and Rationale.

2.2.  An implementation shall specify which interval formats it supports (it is permitted to
support only one). Support consists of the following two items.

(i) For each supported interval format, operations (as P1788 will in due course specify) shall
be provided, to at least single-radix single-format (SRSF) level—see Section B
(ii) Conversions shall be provided between any two supported interval formats — see Sec-

tion B.6.41

2.3.  An implementation shall be called 754-conforming (for a particular set of formats) if:
(i) its underlying system is 754-conforming (Definition B3l) for this set of formats, and the
implementation supports the corresponding interval format to at least SRSF level; or (ii) it is
functionally indistinguishable from case (i).

[Note. The reason for case (ii) is that it seems feasible to code an efficient 754-conforming
interval system using only a subset of 754 floating-point features. If so, a floating-point system
that behaves differently from 754 outside this subset can be used. For example, a system that
has only one kind of zero.]

2.4. A 754-conforming implementation shall provide single-radix multiple-format (SRMF) in-
terval support to the same extent that the underlying floating-point provides formatOf opera-
tions, see Section Bl It may support interval formats outside the five basic 754 formats, such
as extended or extendable, see 75483.7.

2.5.  An implementation shall document:

(i) Which interval formats are supported.
(ii) Which interval versions of elementary functions are provided in a given format.
(iii) For each such version:
(a) a sharpness measure, as P1788 will decide (e.g. Vienna’s “tight”, “accurate”, “valid”);
(b) the level of mixed-format support, SRSF or SRMF; and just which operand interval
formats are supported in the SRMF case.
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3. RATIONALE

This divides into Foundations; Terminology and notation; Definitions; Overall Aims; Level 1
description; Level 2 description; and Support levels for interval elementary functions.

3.1. Foundations. Motion 2 and the associated position paper PP008, defining a levels struc-
ture as a guideline for the standard.
Motion 3, which defines P1788’s number system and set of intervals.

3.2. Terminology and Notation. 7548X denotes section X in the standard IEEE754-2008.
Vienna§X stands for section X in the final version of the Vienna proposal, 19 December 2008.
“Einarsson—Kulisch” refers to the motion under discussion as motion 5 at the time of writing
(June 09), and its supporting position paper.

Motion 3 decided that the P1788 intervals comprise precisely the elements of the set of all
closed and connected subsets of the reals. Discussions with Kulisch, Neumaier and others
resulted in the notation IR for this set, and IR for the “classical” set of nonempty, bounded
closed intervals. These notations are used here and in the latest revision of Einarsson—Kulisch,
and hopefully will be acceptable to the group for use in the standard text. [Note that IR is the
lattice-theoretic completion of IR, with containment as partial order.|

Usually, point values are denoted by normal-weight symbols z,y,... and intervals by bold
symbols x,y, . . ..

3.3. Definitions. [Note. These are intended to be rewritten into a standard set of definitions,
abbreviations and acronyms of this standard. I have put them into alphabetical rather than
logical order (as in 754§2) for ease of looking up. Please bear with the fact that some of them
are currently just forward references.]

3.3.1. 754-conforming system (754 system for short). A programming environment that
provides floating-point arithmetic conforming to IEEE754-2008.

[Note. A hardware processor (e.g. the Cell processor) may not be 754-conforming in itself, but
a 754-conforming system may be built on it with software assistance.]

3.3.2. an-format (abstract number format) and an-format associated to a concrete num-
ber format. See Section B8l

3.3.3. ai-format (abstract interval format) and ai-format associated to a concrete interval
format. See Section

3.3.4. basic 754 format. One of the five 754 floating-point formats binary32, binary64,
binary128, decimal64, decimall28.

3.3.5. basic operation. One of the five elementary functions + — * / and NE

3.3.6. cn-format, ci-format (concrete point/interval format). A point/interval format
associated with a particular representation. See Section B.6.1] and B.G.2

3.3.7. hull. The (interval) hull of a subset of R is the tightest P1788 interval containing that
subset.

3.3.8. implementation. When used without qualification, means an implementation of this
standard, P1788.

3.3.9. infsup. Describes a representation of an interval based on its lower and upper bounds.

3.3.10. interval datum, F-interval datum. See Section
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3.3.11. interval elementary function. An interval version of a point elementary function,
that is provided by an implementation. The set of these is the implementation’s interval
elementary function library (interval library for short). These terms may be qualified by
a format, e.g. “binary64 interval library”.

3.3.12. interval extension of a point function. See Section Bl

3.3.13. interval format. See Definition and Definition
When used without qualification, interval format means an infsup interval format—by
contrast with, say, a midrad format.

3.3.14. interval function, interval mapping. A function from intervals to intervals is called
an interval mapping. If it is an interval extension of a point function, it is also called an
interval function. See Section B0

3.3.15. interval version of a point function. The same as interval extension; but often used
with an indication of its operand and destination formats, as in “binary64 SRMF interval ver-
sion”.

3.3.16. midrad. Describes a representation of an interval based on its midpoint and radius.

3.3.17. mixed-format interval arithmetic operation. One where the formats of the operand
interval(s) and the destination interval may not all be the same.

[Note. Mixed-format does not mean that the lower and upper bounds of an individual interval
(represented in infsup form) can have different floating-point formats. The theory, as phrased
here, precludes this.]

3.3.18. multiple-format. Multiple-format interval arithmetic means supporting arithmetic
in more than one interval format and conversions between these formats.

[Note. SRSF, SRMF and MRMF interval support are all multiple-format (if more than one
interval format is supported); SRMF and MRMF, but not SRSF, are mixed-format.]

3.3.19. point elementary function. A point function, in the sense of Section B4l that is
provided by an implementation. The set of these is the implementation’s point elementary
function library (point library for short). These terms may be qualified by a format, e.g.
“binary64 point library”. The arithmetic operations + — * / count as elementary functions.

3.3.20. sharpness measure. A way to describe the quality of an interval version of a function:
for instance the “tight”, “accurate”, “valid” scheme in Vienna§3.2.

3.3.21. support. An implementation supports an abstract interval format IF if it provides a
concrete interval format that represents IF. See Section BB and

A function f is interval-supported in an interval format IF if there is an interval version of
f whose destination format is IF. Levels of support (SRSF, SRMF and MRMF) are described
in Section B
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3.4. Overall Aims. Ramon Moore’s Fundamental Theorem of Interval Arithmetic (FTIA) is
central to interval computation. Roughly, it says that if £ is an explicit real expression defining
a real function f(z1,...,z,), then evaluating E “in interval mode” over any interval inputs
(x1,...,x,) is guaranteed to give an enclosure of the range of f over those inputs.

This motion has two aims, linked to each other and to the FTIA.

Aim 1 is to define a framework for finite precision interval arithmetic in multiple formats. In
this framework the FTIA is easily proved—indeed almost obvious. The finite precision interval
operations are defined to operate on a set of abstract objects that happens—except for Not
an Interval (Nal)-—to be a finite subset of the infinite set IR. The definition of operations is
independent of any representation that may be chosen for intervals.

The framework should permit mixing intervals of different formats in arithmetic expressions,
as well as potential compile-time “exact denotations” of intervals such as (7 4+ [—0.1,0.1}).
However, this motion does not commit P1788 to any stance on such issues.

[Note: To simplify wording I am assuming P1788 defines an Nal object. Personally I support
Nal; editorially I have no preference; and Nal is peripheral to the argument.|

This is exactly analogous to how 754 defines the finite precision point operations, on a set
of abstract objects that happens—except for -0, +0 and NaN—to be a finite subset of the
extended real numbers.

The abstract objects and operations form interval level 2. Comparing with the Einarsson-
Kulisch position paper, level 2 corresponds to its initial “declarative” definitions of operations,
while the later “procedural” definitions belong to level 3. To see the utility of level 2, ask
the question “How to prove the FTIA, starting from the procedural definitions?” Answer:
you cannot, except by passing through a stage equivalent to the level 2 abstract objects and
operations.

Aim 2 is to show that this abstract multiple-format arithmetic is, for the most frequently used
operations, easy to implement efficiently on a 754 system, by exploiting two features of the 754
standard:

1. Every floating-point computational operation (754§2.1.11) has a defined destination format.

2. The basic operations + — * / and \/~ are formatOf operations (75485.1 and §5.4.1), which
means that the correctly rounded result is produced for any operands of the same radiz as
the destination format.

This makes mixed-format interval arithmetic for the basic operations, between formats of the
same radix, only slightly more work to implement sharply (i.e., with tightest possible enclosures
for each individual operation) than is single-format interval arithmetic. Mixed-radix is less easy,
as there is no one best way to do the needed radix conversions. In my view it should not be
considered.

In summary, Level 2, as defined here, has a precise relation to the mathematical level 1, that
is easily grasped and easily reasoned about. It also offers—to turn this into reality is the job
of implementers—a precise and easily grasped relation to the representation/algorithmic level
3. Hence it provides a layer between mathematics and implementation that will be crucial for
proving the correctness of this standard, and of programs built upon it.
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3.5. Level 1 description. This section recapitulates matters at the mathematical level that
have, I believe, already been decided.

I believe nothing in this motion and rationale hinders the implementation of various forms of
non-standard intervals—Kahan, modal, etc.—as discussed at the end of Vienna§1.2. Their the-
ory is incompatible with certain representations, e.g., with a finite precision midrad (midpoint-
radius) representation of intervals, though there is nothing to stop an algorithm using this
internally.

3.5.1. R is the set of reals. R* is the set of extended reals, namely R U {—o0, +00}. Using the
terminology of 754 (754§2.1.25 and elsewhere), any member of R* is called a number: it is a
finite number if it is in R, else an infinite number.

3.5.2. Following Motion 3, the set of textbook intervals (Vienna §1.2) in R, denoted IR,
comprises the empty set () together with all closed nonempty intervals of real numbers

x=[z,7]:={reR|z<z<T},

where —00 < x < 7T < +00.

The above definition implies —0o and 400 are never members of an interval. Consistent with
the traditional notation (z,7] == {zx e R |2 <z <7}, [2,7) = {z e R|z<z<T}, and
(z,7) :={x € R |z <x <T}, the round bracket notation for closed intervals with an infinite
end point can be used; e.g. [2,400) is the same as [2, +00].

The requirement that & be nonempty implies x cannot be 400, and T cannot be —oo; we treat
[—00, —00] and [+00, +00] as having no meaning (rather than being empty).

3.5.3. The (interval) hull of an arbitrary subset s of R, written hull(s), is the tightest member
of IR that contains s. (The tightest set with a given property is the intersection of all other
sets having that property, provided the intersection itself has this property.)

3.5.4. A point function is a (possibly partial) multivariate real function: that is, a mapping
f from a subset D of R" to R™ for some integers n > 0, m > 0. (When n =0 and m = 1, we
have a named real constant.) When not otherwise specified, a scalar function is assumed, i.e.
m = 1. If m > 1, the function is called a vector function. D is the domain of f, also written
Dy. To specify n, call f an n-variable point function, or denote f as

f(ﬂj‘l, e ,.Z‘n).

The range (often called exact range in the literature) of f over an arbitrary subset s of R™ is
the set

range(f;s) ={ f(z) |z € s and x € Dy }.

Equivalently, for the case where f has separate arguments s1, ..., s,, each being a subset of
R, the range is written as

range(f; Sty Sn)

This is an alternative notation for the case where s is the cartesian product of the s;.
Notes.

1. Here, f is a mapping, not an expression.

2. For instance range(,/";[—1,1]) = [0,1]. That is, we follow the convention, usual in mathe-
matics, that when evaluating over sets, points outside Dy are simply ignored. The Vienna
proposal, and Einarsson—Kulisch, make the same definition.

3. This motion does not commit P1788 to any specific means of signalling evaluation outside
the domain of a function, such as a flag or exception.

4. For the 754 policy on evaluating point functions outside the domain, see 75489.1.1.
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3.5.5. Unless otherwise specified, an interval mapping is a mapping f from IR " to IR for
some n > 0, m > 0. To specify n, call f an “n-variable interval mapping”, or denote f as
f(x1,...,@,). As with point functions, m = 1 is assumed unless said otherwise.

An interval mapping is called an interval function if it is an interval version of some point
function, as defined next. Examples of interval mappings that are not interval functions are the
intersection and interval-union operations, (,y) — x Ny and (x,y) — hull(z U y).

Given an n-variable point function f, an interval extension of f, also called an interval
version of f, is any interval mapping f such that

f(s) Drange(f;s) for any subset s of R".
The sharp interval extension of f is defined by
f(s) = hull(range(f;s)) for any subset s of R".

Equivalently, using multiple-argument notation for f, an interval extension satisfies

f(s1,...,8,) 2D range(f;s1,...,8n),

and the sharp interval extension satisfies

f(s1,...,8,) = hull(range(f; s1,...,8n)).

When f is a binary operator e written in infix notation, this gives the usual definition of its
(sharp) interval extension as

xey=hull({zey|zcx, ycy,and z ey is defined }).

Notes.

1. Example. With these definitions, « * {0} = {0} for any nonempty interval x, and x/0 = 0,
for any interval x.

2. All interval functions used here are automatically defined for all arguments—e.g. for the
sharp extension of “point square root”,

VI-1,4] =10,2], +/[-2,—1] =0.
3.6. Level 2 description.

3.6.1. An abstract number format (an-format) F is a finite subset of R* containing —co
and +oo.

A format in the 754 sense (a concrete number format, cn-format, such as binary64) shall
be identified with the an-format comprising those extended-real numbers that are exactly rep-
resentable in that format, where —0 and 40 both represent 0. This is the an-format associated
to the concrete format.

Notes.

1. In view of this definition, 754’s —0 and +0 are considered identical. Also, in 754 decimal
formats, numbers in the same cohort are considered identical.

2. For examples, we use the abbreviations b64 to mean 754’s 64-bit binary format, d64 for 64-bit
decimal, and so on.

3.6.2. An F-interval, for some an-format F, is either the empty set, or a textbook interval
whose endpoints are in F. When it is necessary to distinguish, it is called an infsup (infimum-
supremum) F-interval by contrast to, say, an interval represented in a midrad (midpoint-radius)
form. The set of all F-intervals is denoted by IF.

An F-interval datum, following the definition of floating-point datum in 75483.2, is either

e an F-interval; or
e the abstract object Nal, “Not an Interval”.
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The abstract interval format (ai-format) associated with F means the set of F-interval
datums. It is denoted by IF. Thus

IF = IF U {Nal}.

Note. At this level we assume that there is at most one Nal for all an-formats; at the
representation level this will probably not be the case.

My view of the purpose of Nal is that it behaves as NaN (mostly) does in floating-point
computation: if any operand to an operation is Nal, the result is Nal. Not everyone agrees with
this definition, but this controversy is peripheral to multiple-format issues, so (without prejudice
to what may be decided) the rest of this document ignores the case where some operand to an
operation is Nal.

1. Clearly an an-format uniquely determines an ai-format (also vice versa), and a 754 concrete
format uniquely determines an an-format.

2. An example of a possibly useful an-format that is not associated to a concrete format (but is
derived from one), is an “underflows are flushed to zero” interval system. Say the concrete
format is binary64. Then the nonempty intervals are those whose endpoints belong to F,
which is defined to consist of all binary64 numbers that are not subnormal. Such a system
may give speed advantages on some architectures.

3. The above definitions imply some form of infsup, that is (lower bound, upper bound) repre-
sentation at level 3. Variants of this exist, see for instance Vienna§l.6.

4. It is not just wrong, but actually meaningless at this level, to speak of an interval that has
NaN as an endpoint or has its lower bound greater than its upper bound.

A concrete interval format or ci-format) is a surjective mapping from a set C' of in-
stances of a data structure (typically, a pair of floating-point datums) to an associated ai-format.
There may be several ci-formats with the same data structure and the same ai-format, e.g., the
[xlo,xhi] and [-xlo,xhi] representations of an interval.

3.6.3. The (interval) F-hull of an arbitrary subset s of R, written hullp(s), is the tightest
F-interval that contains s.
Notes.

1. The set hullp(s) always exists, because F is finite and contains +oo.

2. Always, hullp(s) contains hull(s). If an-format G (as a subset of R*) contains an-format F
—equivalently in the 754 case, if format G is wider than [ in the sense of 754§2.1.36—then
hully(s) contains hullg(s).

3.6.4. Interval format conversion. If I is an an-format, the conversion to format F shall mean
the operation that maps an interval & of any other supported format to its F-hull,

y = hullp(x).

On 754 systems, this interval operation can in all cases (whether x has the same radix as IF or
not) be implemented in terms of one of the floating-point operations formatOf-convertFormat
defined in 75465.4.2, with the appropriate outward rounding.

3.7. Support levels for interval elementary functions. The Fundamental Theorem of In-
terval Arithmetic (FTIA) relies on each point elementary function e in a real expression being
replaced by an interval version e. Mathematically, e can be an arbitrary interval extension of
e, and its arguments and result are not limited by any concrete interval format.

Practically, a level 2 interval version must be implemented at level 3 in terms of concrete
formats such as binary64. Typically, e is coded to deliver a result of a specified ci-format, from
operands of a limited number of ci-formats. What should multiple-format support mean? For
a given supported interval format F and an elementary function e, three levels of support are
suggested by the design of the 754 standard. In all of them, conversions as in Section B.6. 4] are
provided between all supported interval formats.
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1. Single-radix, single-format (SRSF). In SRSF support, e has an interval version e that takes
F-interval operand(s) and gives an F-interval result. Thus explicit format conversion is needed
for any interval operand of a different format from F.

2. Single-radix, mixed-format (SRMF). In SRMF support, e has an interval version e that takes
operand(s) of any supported interval format of the same radix as F, and gives an F- interval
result. Thus explicit format conversion is needed for any operand whose interval format has
a different radix from F.

3. Mixed-radix, mixed-format (MRMF). In MRMF support, e has an interval version e that
takes operand(s) of any supported interval format, and gives an F-interval result. Thus no
explicit format conversion is required for any operand.

Clearly SRMF includes SRSF (SRMF support provides SRSF in particular); and MRMF
includes SRMF. I believe (this is my personal view):

(a) A function being “interval-supported” should, in all cases, mean at least SRSF support.

(b) Since SRMF support is the interval equivalent of 754’s formatOf operations, it is appropriate
on a 754 system for the formatOf operations of 75485.4.1, namely the basic operations
(Definition B30]) and fusedMultiplyAdd. (Also, convertFromInt is a formatOf operation,
but it does not seem relevant for intervals.)

(¢c) Mandatory MRMF support is less appropriate, but P1788 may make recommendations on
how it is done.

My reason for (b) is as follows. For a formatOf floating-point operation, whatever the input
and output formats, provided they have the same radix, the correctly rounded result is produced
in all cases. E.g. when adding two b64’s, whether the destination format IF is b32, b64 or b128,
and whatever the rounding direction, the F-number nearest the exact result in the relevant
direction will be delivered. The formatOf concept eliminates the risk of “double rounding” error
in mixed-format operations.

There are various algorithms for the basic interval operations—multiply and divide especially
have variants optimised for different environments—but all those that I know of can exploit the
formatOf feature. That is, all can be written, in terms of the point operations, so that arbitrary
mixed formats of the same radix can be handled by essentially the same code, while remaining
sharp, that is optimally tight, at the level of a single interval operation.

Therefore I believe the effort in implementing SRMF interval support of the basic operations,
across all 754 formats supported by a system, is negligibly greater than that of implementing
SRSF support for those operations in just one format such as binary64.

Finally, issues of accuracy (tightness) of interval elementary functions are largely independent
of the SRSF/SRMF/MRMF issue and should be decided separately. Also, in mixed-format
interval expressions (rather than individual operations) the destination format of each individual
operation must be decided. The rules for this are language-dependent, though it is likely that
P1788 will make recommendations and/or requirements about them, analogous to those for
floating-point arithmetic in 754§10.
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