
Practical Interval Arithmetic

Ulrich Kulisch
Institut für Angewandte und Numerische Mathematik

Universität Karlsruhe, D-76128 Karlsruhe
(joint work with Goetz Alefeld, Gerd Bohlender, Klaus Braune, Reinhard Kirchner,

Rudolf Lohner, and Markus Neher.)

1. Interval Sets and Mappings

Interval arithmetic over the real numbers deals with closed and connected sets of
the real numbers R. An interval is denoted by an ordered pair. The first element is the
lower bound and the second is the upper bound. The lower bound shall not be greater
than the upper bound. If an interval is bounded it is written as [a, b], with a, b ∈ R. If
it is unbounded it is written as (−∞, a] or [b, +∞) with a, b ∈ R or (−∞, +∞) where
the parentheses indicate that the bounds −∞ and +∞ are not elements of the interval.
The set of all such intervals is denoted by IR. With respect to set inclusion as an order
relation {IR,⊆} is a complete lattice. It is bounded from below by the empty set ∅

and from above by the set (−∞, +∞). If an interval is denoted by a single letter,
the lower bound is denoted by a subscript 1 and the upper bound is denoted by the
subscript 2.

Arithmetic for real numbers as well as for sets of real numbers is well defined.
For interval operands the result of an operation always leads to an interval again and
the bounds of the result can be expressed by simple expressions for the bounds of the
operands. This gives interval arithmetic the right to exist. The corresponding formulas
can be deduced from the definition of the operations for sets of real numbers in a strict
mathematical manner [5, 6]. The calculus {IR, +,−, ∗, /} is free of exceptions.

On the computer real numbers are approximated by the subset of floating-point
numbers as defined by the IEEE P754 floating-point arithmetic standard, for instance.
The set of all floating-point numbers is denoted by F. The subset of all bounded
or unbounded intervals of IR with finite bounds of F is denoted by IF. Intervals of
IR, arithmetic operations, and comparison relations for these are approximated by
intervals, arithmetic operations, and comparison relations for intervals of the set IF.

We consider here only the set of double precision binary or decimal floating-point
numbers. For other floating-point formats and encodings the considerations are similar.

A real number or an interval over the real numbers is mapped onto the smallest
floating-point interval that contains the number or interval respectively. This mapping

♦ : IR → IF is characterized by the following properties:

(R1): ♦ a = a , for all a ∈ IF,

(R2): a ⊆ b ⇒ ♦ a ⊆ ♦ b, for a , b ∈ IR,

(R3): a ⊆ ♦ a , for all a ∈ IR,

(R4): ♦ (−a) = − ♦ a , for all a ∈ IR.

2. Arithmetic Operations for Intervals

The IEEE floating-point arithemtic standard P754 specifies arithmetic with four
roundings: to the nearest floating-point number, downwards, upwards, and towards
zero. For these operations the following notations will be used:

+,−, ∗, / for the operations with rounding to the nearest floating-point number,
▽+ , ▽− , ▽∗ , ▽/ for the operations with rounding downwards,

△+ , △− , △∗ , △/ for the operations with rounding upwards,1 and
∗|,−|, +|, /| for the operations with rounding towards zero (chopping).2

With these notations for bounded intervals a = [a1, a2], b = [b1, b2] ∈ IF the follow-
ing arithmetic operations +,−, ∗, and / are defined:

Addition [a1, a2] + [b1, b2] = [a1
▽+ b1, a2 △+ b2].

Subtraction [a1, a2] − [b1, b2] = [a1
▽− b2, a2 △− b1].

Multiplication [b1, b2] [b1, b2] [b1, b2]

[a1, a2] ∗ [b1, b2] b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0

[a1, a2], a2 ≤ 0 [a2
▽∗ b2, a1 △∗ b1] [a1

▽∗ b2, a1 △∗ b1] [a1
▽∗ b2, a2 △∗ b1]

a1 < 0 < a2 [a2
▽∗ b1, a1 △∗ b1] [min(a1

▽∗ b2, a2
▽∗ b1), [a1

▽∗ b2, a2 △∗ b2]

max(a1 △∗ b1, a2 △∗ b2)]

[a1, a2], a1 ≥ 0 [a2
▽∗ b1, a1 △∗ b2] [a2

▽∗ b1, a2 △∗ b2] [a1
▽∗ b1, a2 △∗ b2]

Division, 0 /∈ b [b1, b2] [b1, b2]

[a1, a2]/[b1, b2] b2 < 0 b1 > 0

[a1, a2], a2 ≤ 0 [a2
▽/ b1, a1 △/ b2] [a1

▽/ b1, a2 △/ b2]

[a1, a2], a1 < 0 < a2 [a2
▽/ b2, a1 △/ b2] [a1

▽/ b1, a2 △/ b1]

[a1, a2], a1 ≥ 0 [a2
▽/ b2, a1 △/ b1] [a1

▽/ b2, a2 △/ b1]

Division, 0 ∈ b b = [b1, b2] [b1, b2]

[a1, a2]/[b1, b2] [0, 0] b1 < b2 = 0 0 = b1 < b2

[a1, a2], a2 < 0 ∅ [a2
▽/ b1, +∞) (−∞, a2 △/ b2]

[a1, a2], a1 ≤ 0 ≤ a2 (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, a2], a1 > 0 ∅ (−∞, a1 △/ b1] [a1
▽/ b2, +∞)

Division by an interval that includes zero in the last table leads to unbounded
intervals. To be complete, arithmetic operations for unbounded intervals now have to
be defined also.

1In our Pascal extension (available since 1980) and the Fortran extension we developed for and
with IBM (available 1990) pairs of keybord symbols + <,− <, ∗ <, / < and + >,− >, ∗ >, / > have
been used for the operations with rounding downwads and upwards, respectively.

2Frequently used programming languages do not allow four plus, minus, multiply, and di-
vide operators for floating-point numbers. A future interval arithmetic standard could or
should specify names for low level operations with the directed roundings. They could be:
addp, subp,mulp, divp, addn, subn,muln, and divn. Here p stands for rounding toward positive and
n for rounding toward negative. With these operations interval routines would be fully transferable
from one processor to another.

The first rule is that any operation with the empty set ∅ has the empty set as
its result. Arithmetic operations for unbounded intervals of IF can be performed on
the computer by using the above formulas for bounded intervals if in addition a few
formal rules for operations with −∞ and +∞ are applied. These rules are shown in
the following tables.

Addition −∞ b +∞

−∞ −∞ −∞ −

a −∞ − +∞

+∞ − +∞ +∞

Subtraction −∞ b +∞

−∞ − −∞ −∞

a +∞ − −∞

+∞ +∞ +∞ −

Multiplication −∞ b < 0 0 b > 0 +∞

−∞ +∞ +∞ 0 −∞ −∞

a < 0 +∞ − − − −∞

0 0 − − − 0

a > 0 −∞ − − − +∞

+∞ −∞ −∞ 0 +∞ +∞

Division −∞ +∞

a 0 0

These rules are not new in principle. They are well established in real analysis and
IEEE P754 provides them anyway. The only rule that goes beyond IEEE P754 is

(1) 0 ∗ (−∞) = (−∞) ∗ 0 = 0 ∗ (+∞) = (+∞) ∗ 0 = 0.

This rule follows quite naturally from the definition of unbounded intervals. However,
it should not be taken as a new mathematical law. It is just a short cut to easily
compute the bounds of the result of an operation on unbounded intervals.

With the mapping ♦ : IR → IF and its properties listed at the end of Section 1
the operations defined in this section have the following property which defines them
uniquely:

(RG): a ♦◦ b := ♦ (a ◦ b), for all a , b ∈ IF and all ◦ ∈ {+,−, ∗, /}.

3. Remarks on the Arithmetic Operations

I. In the table for division by an interval that includes zero the case b1 < 0 < b2 is
missing. This needs some explanation.

A basic concept of mathematics is that of a function or mapping. A function consists
of a pair (f,Df). It maps each element x of its domain of definition Df on a unique
element y of the range Rf of f , f : Df → Rf .

In real analysis division by zero is not defined. Thus a rational function y = f(x)
where the denominator is zero for x = c is not defined for x = c, i.e., c is not an element
of the domain of definition Df . Since the function f(x) is not defined at x = c it does
not have any value or property there. In this strict mathematical sense, division by an
interval [b1, b2] with b1 < 0 < b2 is not well posed. For division the set b1 < 0 < b2

devolves into the two distinct sets [b1, 0]3 and [0, b2] and division by an interval [b1, b2]
with b1 < 0 < b2 actually consists of two divisions the result of which again consists

3Since division by zero does not contribute to the solution set it does not matter whether a paran-
thesis or bracket is used here.

of two distinct sets. In each case the result is a single unbounded interval. The two
divisions should be performed separately. Division by the two sets [b1, 0] and [0, b2] is
shown in the relevant table.

The situation is plainly shown by the signs of the bounds of the divisor before the
division is executed. For interval multiplication or division a case selection has to be
done (by hardware or software) anyhow before the operations are performed. In the
case b1 < 0 < b2 the sign of b1 is negative and the sign of b2 is positive.

In the user’s program, however, the two divisions appear within a single operation,
as division by an interval [b1, b2] with b1 < 0 < b2. So an arithmetic operation in the
user’s program delivers two distinct results. This is an unusual situation in conventional
computing.4

A solution to the problem would be for the computer to provide a flag for distinct
intervals. The situation occurs if the divisor is an interval that contains zero as an
interior point. In this case the flag would be raised and signaled to the user. The user
may then apply a routine of his choice to deal with the situation as is appropriate for
his application.

This routine could be: Modify the operands and recompute, or continue the com-
putation with one of the sets and ignore the other one, or put one of the sets on a
list and continue the computation with the other one, or return the entire set of real
numbers (−∞, +∞) as result and continue the computation, or stop computing, or
any other action.

A somewhat natural solution would be to continue the computation on different
tasks, one for each interval. But the situation can occur repeatedly. How many tasks
would we need? Future multicore processors will provide a large number of units
and perhaps allow to run many tasks in parallel. A similar situation occurs in global
optimization using subdivision. After a certain test several candidates may be left for
further investigation.

Newton’s method reaches its ultimate elegance and strength in the extended interval
Newton method. It computes all (single) zeros in a given domain. If a function has
several zeros in a given interval its derivative becomes zero in that interval also. Thus
Newton’s method applied to that interval delivers two distinct sets. This is how the
extended interval Newton method separates different zeros. If the method is continued
along two separate paths, one for each of the distinct intervals it finally computes all
zeros in the given domain. If the method continues with only one of the two distinct
sets and ignores the other one it computes an enclosure of only one zero of the given
function. If the interval Newton method delivers the empty set, the method has proved
that there is no zero in the initial interval.

II. If interval arithmetic is hardware supported then execution of the operations
listed above is about as fast as execution of the corresponding floating-point operations.
It is thus not reasonable to define and study operations between floating-point numbers
and intervals in order to save computing time. Floating-point arithmetic and interval

4It would be very convenient for computing if other operations would also deliver two answers:
floating-point addition and subtraction the rounded result and the error, multiplication the product
to the double length and division the quotient and the remainder.

arithmetic are not the same calculus for approximate arithmetic for real numbers. They
should be kept strictly separate.5

Of course, computing with result verification often makes use of floating-point com-
putations. If executed in IEEE P754 arithmetic this may lead to exceptional results. So
there remains the question of how results like −∞, +∞, NaN , −0, +0 can reasonably
be mapped on floating-point intervals.

The following would be reasonable: −0 and +0 can only mean 0. Since NaN is not
a real number it should be mapped on the empty set and since −∞ and +∞ are also
not real numbers their image could or should also be the empty set. If the image of the
result of a floating-point computation is the empty set the user should be informed.

III. The empty set ∅ may occur as result of an interval operation as listed in the
tables of Section 2. The result of any operation with the empty set ∅ was defined to be
the empty set. This suggests an encoding of the empty set by ∅ = [+NaN,−NaN].
Then the rules for interval arithmetic listed in Section 2 can also be applied to the
empty set. By the well established rules of IEEE P754 for NaN an operation with the
empty set would then automatically produce the empty set as the result.

The encoding ∅ = [+NaN,−NaN] for the empty set also turns out to be useful for
the definition of comparison relations for intervals. These will be studied in Section 5.

4. Variable Precision Interval Arithmetic

Success of interval arithmetic is based on two arithmetical features: One is double
precision interval arithmetic. The other is variable precision interval arithmetic [1, 9,
10, 12]. For interval evaluation of an algorithm (a sequence of arithmetic operations) in
the real number field a theorem by R. E. Moore [10] states that increasing the precision
by k digits reduces the error bounds by b−k, i.e., results can always be guaranteed to a
number of correct digits by using variable precision interval arithmetic (for details see
[1], [12]). Variable length interval arithmetic can be made very fast by an exact dot
product and complete arithmetic [5], [8]. An exact dot product for the double precision
format is the basic tool to achieve high speed variable (dynamic) precision arithmetic
for real and interval data. Pipelining gives it high speed, and exactitude brings very
high accuracy into computation. There is no way to compute a dot product faster
than the exact method. By pipelining, it can be computed in the time the processor
needs to read the data, i.e., it comes with utmost speed [4, 5]. Variable length interval
arithmetic fully benefits from such speed [5]. No software simulation can go as fast.
With operator overloading variable length interval arithmetic is very easy to use.

5. Comparison Relations and Lattice Operations

Three comparison relations are important for intervals of IF:

(2) equality, less than or equal, and set inclusion.

Let a and b be intervals of IF with bounds a1 ≤ a2 and b1 ≤ b2 respectively. Then
the relations equality and less than or equal in IF are defined by:

a = b :⇔ a1 = b1 ∧ a2 = b2,

a ≤ b :⇔ a1 ≤ b1 ∧ a2 ≤ b2.

5The XSC-languages allow real and interval data and operations between these in an expression.
However, all real data are immediately interpreted as intervals and all operations are performed as
interval operations.

Since bounds for intervals of IF may be −∞ or +∞ these comparison relations are
executed as if performed in the lattice {F∗,≤} with F

∗ := F ∪ {−∞} ∪ {+∞}.
With the order relation ≤, {IF,≤} is a lattice. The greatest lower bound (glb) and

the least upper bound (lub) of a , b ∈ IF are the intervals

glb(a , b) := [min(a1, b1),min(a2, b2)],

lub(a , b) := [max(a1, b1),max(a2, b2)].

The greatest lower bound and the least upper bound of an interval with the empty set
are both the empty set.

The inclusion relation in IF is defined by

(3) a ⊆ b :⇔ b1 ≤ a1 ∧ a2 ≤ b2.

With the relation ⊆, {IF,⊆} is also a lattice. The least element in {IF,⊆} is the
empty set ∅ and the greatest element is the interval (−∞, +∞). The infimum of two
elements a , b ∈ IF is the intersection and the supremum is the interval hull (convex
hull):

inf(a , b) = a ∩ b := [max(a1, b1),min(a2, b2)] or the empty set ∅,

sup(a , b) = a∪b := [min(a1, b1),max(a2, b2)].

The intersection of an interval with the empty set is the empty set. The interval hull
with the empty set is the other operand.

If in the formulas for glb(a , b), lub(a , b), a ∩ b, a∪b, a bound is −∞ or +∞ a
parenthesis should be used for this interval bound to denote the resulting interval. This
bound is not an element of the interval.

If in any of the comparison relations defined here both operands are the empty set,
the result is true. If in (3) a is the empty set the result is true. Otherwise the result
is false if in any of the three comparison relations only one operand is the empty set.6

A particular case of inclusion is the relation element of. It is defined by

(4) a ∈ b :⇔ b1 ≤ a ∧ a ≤ b2.

Another useful check is for whether [a1, a2] is an interval at all, that is, if a1 ≤ a2.

6. Evaluation of Functions

Let f be a function and Df its domain of definition. For an interval x ⊆ Df , the
range range(f,x) of f is defined as the set of the function’s values for all x ∈ x:

(5) range(f,x) := {f(x)|x ∈ x}.

On the computer, interval evaluation of a real function f(x) for x ⊆ Df should
deliver a highly accurate enclosure of the range range(f,x) of the function.

Evaluation of a function f(x) for an interval x with x ∩ Df = ∅, of course, does
not make sense, since f(x) is not defined for values outside its domain Df . The empty
set ∅ should be delivered and an error message may be given to the user.

6A convenient encoding of the empty set may be ∅ = [+NaN,−NaN]. Then most comparison
relations and lattice operations considered in this section would deliver the correct answer if con-
ventional rules for NaN are applied. However, if a = ∅ then set inclusion (3) and computing the
interval hull do not follow this rule. So in these two cases whether a = ∅ must be checked before the
operations can be executed.

There are, however, applications in interval arithmetic where information about a
function f is useful when x exceeds the domain Df of f . The interval x may also be
the result of overestimation during an earlier interval computation.

In such cases the range of f can only be computed for the intersection x
′ := x∩Df :

range(f,x′) := range(f,x ∩ Df) := {f(x)|x ∈ x ∩ Df}.

To prevent the wrong conclusions being drawn, the user must be informed that the
interval x had to be reduced to x

′ := x ∩ Df to compute the delivered range. A
particular flag for domain overflow may serve this purpose. An appropriate routine
can be chosen and applied if this flag is raised.
We give a few examples:

l(x) := log(x), Dlog = (0, +∞),
log((0, 2]) = (−∞, log(2)].
But also
log([−5, 2]′) = log((0, 2]) = (−∞, log(2)].
The flag domain overflow should be set. It informs the user that the function has been
evaluated for the intersection x

′ := x ∩ Df = [−5, 2] ∩ (0, +∞) = (0, 2].

h(x) := sqrt(x), Dsqrt = [0, +∞),
sqrt([1, 4]) = [1, 2],
sqrt([4, +∞)) = [2, +∞).
sqrt([−5,−1]) = ∅, an error message sqrt not defined for [−5,−1], may be given to
the user.
sqrt([−5, 4]′) = sqrt([0, 4]) = [0, 2].
The flag domain overflow should be set. It informs the user that the function has been
evaluated for the intersection x

′ := x ∩ Df = [−5, 4] ∩ [0, +∞) = [0, 4].

k(x) := sqrt(x) − 1, Dk = [0, +∞),
k([−4, 1]′) = k([0, 1]) = sqrt([0, 1]) − 1 = [−1, 0].
The flag domain overflow should be set. It informs the user that the function has been
evaluated for the intersection x

′ := x ∩ Df = [−4, 1] ∩ [0, +∞) = [0, 1].

7. Hardware Support for Interval Arithmetic

In the early paper on interval arithmetic (1958) by Teruo Sunaga entitled: Theory of

an Interval Algebra and its Application to Numerical Analysis the last sentence states:
A future problem will be: To revise the structure of the automatic digital computer from

the standpoint of interval calculus and topology. So the requirement to adapt the digital
computer to the needs of interval arithmetic is as old as interval arithmetic itself. A
solution to the problem is not given in Sunaga’s paper. At the time of the paper the
technology was poor. There was no hope of getting it realized on computers in those
days.

The following figure gives a brief sketch of what hardware support for interval
arithmetic may look like. It would not be hard to realize it in modern technology.

The circuitry broadly speaks for itself. The interval operands are loaded in parallel
from a register file or a memory access unit. Then, after multiplexers have selected

the appropriate operands, the lower bound of the result is computed with rounding
downwards and the upper bound with rounding upwards with the selected operands.
In case of multiplication if both operands contain zero as an interior point a second
multiplication is necessary. The result of both multiplications is forwarded to a com-
parison unit. Here for the lower bound of the result the lower and for the upper bound
the higher of the two products is selected. This lower part of the circuitry could also
be used to perfom comparison relations.

64-bit
1-bitc = [c1, c2]

lower bound upper bound

Register File
(or memory access unit)
pairs of reals

a1 a2

sa1
sa2

b1 b2

sb1 sb2

zero

za1

zero

za2

zero

zb1

zero

zb2

0 1 0 1 0 1 0 1oa1
oa2

ob1 ob2
a1|a2 =: al a1|a2 =: au b1|b2 =: bl b1|b2 =: bu

al ▽
◦ bl au △◦ bu

◦ ∈ {+,−, ∗, /}c1 c2

a1
▽∗ b2 a2

▽∗ b1 a1 △∗ b1 a2 △∗ b2

a1
▽∗ b2 ≤ a2

▽∗ b1 a1 △∗ b1 ≥ a2 △∗ b2

0 1 0 1
c1 c2

operands: a = [a1, a2], b = [b1, b2], result: c = [c1, c2].
s: sign, z: zero, o: operand select.

Figure 1. Circuitry for Interval Operations

Table 1 shows the control signals for the operand selection by the multiplexers.
These signals are computed from the signs of the bounds of the interval operands
a = [a1, a2] and b = [b1, b2]. In case of multiplication the signal ms is zero if only

one product pair is to be computed, and it is one if a second product pair is to be
computed.

Every operand selector signal can be realized by two or three gates! For more details
see [3] or [5].

os oa1 oa2 ob1 ob2

+ 0 1 0 1

− 0 1 1 0

∗ sb2 + sa1 · sb1 + ms sb1 + sa1 · sb2 + ms ms(sa2 + sa1 · sb2) sa1 + sa2 · sb1 + ms

/ sb2 + sa1 · sb1 sb1 + sa2 · sb2 sa1 + sa2 · sb1 sa2 + sa1 · sb1

Table 1. Operand selection signals.

The author of this paper is convinced that hardware support for interval arithmetic
is absolutely necessary. The simpler a standard for interval arithmetic is kept the more
likely it is that it will result in hardware support for interval arithmetic.

References

[1] Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York,
1983.

[2] Kahan, W.: A More Complete Interval Arithmetic. Lecture Notes prepared for a summer course
at the University of Michigan, June 17-21, 1968.

[3] Kirchner, R., Kulisch, U.: Hardware support for interval arithmetic. Reliable Computing 12:3,
225–237, 2006.

[4] Kulisch, U. W.: Advanced Arithmetic for the Digital Computer – Design of Arithmetic Units.
Springer-Verlag, Wien, New York, 2002.

[5] Kulisch, U. W.: Computer Arithmetic and Validity – Theory, Implementation and Applications.
De Gruyter, Berlin, New York, 2008.

[6] Kulisch, U. W.: Complete Interval Arithmetic and its Implementation on the Computer. To ap-
pear in the Proceedings of the Dagstuhl Seminar 08021, January 2008, Springer-Verlag, Wien,
New York, 2009.

[7] Lohner, R.: Interval Arithmetic in Staggered Correction Format, 301–321, 1993. In Scientific

Computing with Automatic Result Verification, Academic Press, San Diego, 1993, Adams, E.,
Kulisch, U. (eds.).

[8] IFIPWG-IEEE754R: Letter of the IFIP WG 2.5 to the IEEE Computer Arithmetic Revision

Group, 2007.7

[9] Moore, R. E.: Interval Analysis. Prentice Hall Inc., Englewood Cliffs, New Jersey, 1966.
[10] Moore, R. E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia, Pennsylvania,

1979.
[11] Ratz, D.: On Extended Interval Arithmetic and Inclusion Isotony. Preprint, Institut für Ange-

wandte Mathematik, Universität Karlsruhe, 1999.
[12] Rump, S. M.: Kleine Fehlerschranken bei Matrixproblemen. Dissertation, Universität Karlsruhe,

1980.

7See http://www.mathematik.uni-karlsruhe.de/ianm2/∼kulisch.

