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Abstract. It is proposed to de�ne the set of interval comparisons for P1788
as a Binary Relation Algebra(BRA). This BRA is built from some basic com-
parison relations named the generators. These generators provide an accurate
mathematical description of the interval features on which the comparisons
are grounded. As an illustration such a BRA is presented. Since the number
of comparisons de�ned that way may be very high (∼ 210) , it is impossible
to enumerate and give a name to each comparison. It is thus suggested that
a new type of data named IntervalComparison should be de�ned in 1788. A
set of speci�c operations for IntervalComparison is proposed.

This paper has been written for the IEEE working group P1788 on the stan-
dardization of interval arithmetic with improvements suggested by the remarks of
Nate HAYES, Vincent LEFEVRE, John PRYCE and Jürgen WOLFF von GU-
DENBERG.

1. Introduction

It is proposed to de�ne the set of interval comparisons as a Binary Relation
Algebra(BRA) [6]. This BRA is built from some basic comparison relations named
the BRA generators. The generators provide an accurate mathematical description
of interval features on which the comparisons are grounded.

The rest of this paper is as follows. In Section 2 a rationale of the position is
presented. In Section 3, a brief summary of the notions of BRA is provided. Then
a sketch of a complete BRA generation is given on the example of the BRA of
real numbers comparisons(Section 4). Finally as a conclusion a motion de�ning a
framework for interval comparisons in P1788 Standard is proposed (Section 5)

2. Rationale

De�ning the interval comparison relations for p1788, attention is �rst paid[5][2][4]
to choose the most useful comparisons (the basic comparisons). It must be noticed
that from such basic comparisons, a lot of other comparisons can be derived using
the Boolean operators. However it not an easy task to determine if a given com-
parison can be calculated from the basic comparisons. It is even more di�cult to
�nd the most e�cient expression. Thus the user must be provided with i) an easy
way to determine if his favorite Interval Comparison is derivable ii) an easy way to
specify such a comparison iii) an easy way to check if a comparison condition hold
for a given pair of intervals. To achieve these purposes it is necessary to study the
algebraic structure of the set of derivable comparisons. It is found that the BRA
structure is appropriate. Thus the Interval comparison interface provided to the
user can de�ned (Section 5) , even while the precise interval comparison BRA is
not yet chosen.

When the the de�nition of the interval set or the choice of the basic comparisons
is varied, completely di�erent BRA can be generated. Besides a common pool of
interval properties, some speci�c interval properties are included in each BRA. Thus
a careful discussion is required. In addition no existing result in the literature [1]
[3] [4] is directly compatible with the interval set de�nition of motion 3 [7]. Thus
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Table 1. Operations over Binary Relations

Notation Set de�nition Logical de�nition
T = Rc (a, b) ∈ T ⇔ (b, a) ∈ R t(x, y) = r(y, x)
T = ¬R (a, b) ∈ T ⇔ (a, b) /∈ R t(x, y) = ¬r(x, y)

T = P ∩Q (a, b) ∈ T ⇔ (a, b) ∈ P ∧ (a, b) ∈ Q t(x, y) = p(x, y) ∧ q(x, y)
T = P ∪Q (a, b) ∈ T ⇔ (a, b) ∈ P ∨ (a, b) ∈ Q t(x, y) = p(x, y) ∨ q(x, y)
T = P �Q (a, b) ∈ T ⇔ ∃z (a, z) ∈ P ∧ (z, b) ∈ Q t(x, y) = ∃z p(x, z) ∧ q(z, y)

a cautious adaptation is required. Int that context, it is wise to delay the choice of
the BRA to a future motion devoted to this choice.

Level 2 and lower levels considerations [4] are very important to the e�ciency
of the implementation. However they cannot be usefully addressed at the present
time. They have to be delayed to a future motion.

With the available algorithms the user knows during the design of his program
what comparisons are required. Thus comparison handling could be restricted
to preprocessor. This approach may appear as very interesting. It may cause a
signi�cant improvement of the execution time. However this suggestion raises some
di�culties. A standard like 1788 is not oriented to any particular language and a
preprocessor is not available in all languages. Thus the wording of the motion in
Section 5 suggests a dynamical access to interval comparisons. As a side e�ect new
kinds of algorithms are allowed.

3. Binary relations and comparisons

In this section some basic properties of BRA are reminded and the utility of
this notion to handle comparison operations is discussed. Given a set S, a binary
relation R over S is a set of ordered pairs of S. The relation R can be written:

(1) R = {(a, b) | a ∈ S ∧ b ∈ S ∧ r(a, b)}

From Eqn. 1, it appears that a binary predicate r(x, y) is associated to any binary
relation R. This predicate can be used to compare elements of S. To emphasize
that correspondence, the same name is used for the relation and the predicate.
The capital initial is used in the relation name, while the initial is never written in
capital in the name of the predicate.

In any non-empty set, there is a generic relation 1′ de�ned by 1′ = {(x, x)|x ∈ S}.
This relation is often named the IdentityRelation. It can also be viewed the Equality
of the elements of S since an alternative de�nition of 1′ is 1′ = {(x, y)|x ∈ S ∧ y ∈
S ∧ x = y}.

From a relation R a one can deduce its converse Rc and its complement ¬R.
Similarly two relations P and Q can be combined with the meet, join and composition
operators to produce respectively P ∩Q , P ∪Q and P�Q relations. The de�nitions
of these new relations are provided in Table 1.

The operations meet and join are associative, commutative and mutually dis-
tributive. The composition is associative and distributive over join. It is neither
commutative nor distributive over meet.

It can be checked that a large variety of comparisons can be generated that way.
In fact the only restriction is that the corresponding logical expression involves
at most three di�erent variables. Except for the composition, these operations
introduce the usual combinations of Boolean conditions and comparisons.

A Binary Relation Algebra over S is a set of binary relations over S containing
at least 1′ and stable under the operations of Table 1. It can be shown that the
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Empty Relation 0 is always present in a BRA over S. This relation is such that for
any relation R of the BRA the condition R∩0 = 0 holds. Thus no pair of elements
of S is contained in 0. The main use of the empty relation is to check that two
relations P and Q are disjointed. The condition to check is simply P ∩Q = 0.

It can be shown that the ComparabilityRelation 1 is always present in a BRA over
S. This relation is such that for any relation R of the BRA the condition R∪1 = 1
holds. Thus 1 contains all the pairs of elements of S which can be compared with
some relation of the BRA. It can be easily shown that 1 is an equivalence relation.
When the complement is de�ned as in Table 1 , the relation 1 is necessarily S×St
he S-Universal Relation, that is the set of the pairs of elements of S. The notion
of BRA can be extended to accommodate the situation where not all the elements
of S can be compared. The complement ¬R of some relation R is then required to
satisfy the conditions R∪¬R = 1 and R∩¬R = 0. All the others BRA properties
are preserved. Applying this to some partial order relation PartialLessEqual, the
comparability relation is found to be 1 =PartialLessEqual∪PartialLessEqualc. The
complement of the PartialLessEqual relation is the PartialGreater relation. This
result is similar to what would be found for a total order relation. Of course such
a result would not have been found if the de�nition of complement of Table 1 had
been used.

The presence of the equality in any BRA reinforces the interest of BRA as an
algebraic structure for comparison sets.

Finally there are some atomic relations A1, A2 . . . AN such that i) Ai∩Aj = 0 for
any i and j. ii) any relation R in the BRA can be written in an unique way as the
join of some Ai. This expression is called the atomic decomposition of R. It follows
from these observations that a BRA is completely de�ned by i) the knowledge of
the Ai ii) the speci�cations of the atomic decomposition of the relations Ai � Aj

for any i and j. Since for each relation R, a given atom Ai must be either present
or absent in the atomic decomposition of R, the number of relations in a BRA is
2N , where N is the number of atoms in the BRA.

In the next section, it is shown as an illustration how the usual comparisons
between real numbers can be derived as a member of appropriately de�ned BRA.

4. The real numbers comparisons from a BRA point of view

The comparisons over R are de�ned from the BRA built from a single generator
which is the binary relation ≤. This relation is well known to be an order relation
for R. The order is total, unbounded, dense. In addition the order set (R, ≤)
is a lattice. In the following, we use a literal notation LessEqual instead of ≤ to
emphasize the relation character and avoid strange formulas like =⇔≤ ∩ ≥. In
this section the ComparabilityRelation 1 refers to the R-Universal relation. The
derivation is summarized in Table 2

In this particular case, the use of composition is not needed. This is generally not
true. Since the BRA is de�ned by 3 atomic relations, the total number of relations
in the BRA is 23 = 8. In this count, both the universal relation 1 and the empty
relation 0 are included.

To achieve the description of the BRA , a composition table of the atomic rela-
tions is provided in Table 3 .

It must be noticed that the following properties of the LessEqual relation can
be retrieved from the results of this table: i) LessEqual is an order relation. ii) the
order is total (since 1 ⇔ Equal ∪ LessThan ∪ GreaterThan) iii) the order is dense
(since LessThan � LessThan ⇔ LessThan) iv) for each pair of real numbers there
are a lower bound and a upper bound( this arises from the statements LessThan�
GreaterThan⇔ 1 and GreaterThan� LessThan⇔ 1 ).
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Table 2. Derivation of the Real comparisons BRA from the
unique generator LessEqual. The derivations of the atomic rela-
tions LessThan , Equal and GreaterThan is shown in steps 1-5. In
steps 6-9, it is checked that these relations are atomic. The com-
pletude of the set of atomic relations is veri�ed at step 9. Atomic
decomposition of non-atomic relations are given in steps 9 -12

Step Number Calculated relation Expression Used

1 GreaterEqual GreaterEqual⇔ LessEqualc

2 Equal(≡ 1′) Equal⇔ LessEqual ∩GreaterEqual

3 UnEqual UnEqual⇔ ¬Equal
4 LessThan LessThan⇔ LessEqual ∩UnEqual

5 GreaterThan GreaterThan⇔ GreaterEqual ∩UnEqual

6 0 0 ⇔ LessThan ∩ Equal

7 0 0 ⇔ GreaterThan ∩ Equal

8 0 0 ⇔ LessThan ∩GreaterThan

9 1 1 ⇔ LessThan ∪ Equal ∪GreaterThan

10 LessEqual LessEqual⇔ LessThan ∪ Equal

11 GreaterEqual GreaterEqual⇔ GreaterThan ∪ Equal

12 UnEqual UnEqual⇔ LessThan ∪GreaterThan

Table 3. Table of compositions of atomic relation for The BRA
of real numbers comparison. The results are developed as an ap-
propriate join of atomic relations.

� Equal LessThan GreaterThan

Equal Equal LessThan GreaterThan

LessThan LessThan LessThan Equal ∪ LessThan ∪GreaterThan

GreaterThan GreaterThan Equal ∪ LessThan ∪GreaterThan GreaterThan

Some properties cannot be expressed in this framework i) the order relation
is unbounded (this arises because the BRA generated by the LessEqual relation
would admit the same atomic composition table whether the set is R or R∗. ii)
The lattice property cannot be modeled within a BRA because the corresponding
logical formulas necessarily involve 4 distinct variables .

Despite these limits, the use of a BRA for the set of comparisons over a set S
allows to accurately state many mathematical properties on which the choice is
grounded on.

As long as the number of atomic relations N is very low, the number of relations
in the BRA (2N ) remains small enough so all the comparisons can be enumerated
and named. This is the case for the real numbers comparisons where N = 3 leading
to 2N = 8. Unfortunately it is not expected to be true with interval comparisons,
since the known interval BRA [1], [4] involves 13 or even 26 atomic comparisons
[3]. So that enumerating and naming all the comparisons become impossible. If all
the comparisons in the BRA have to be available to the user, it is necessary then
to de�ne a new type of data so that the user may handle the comparisons he �nds
appropriate to his problem.
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5. The motion

P1788 de�nes a new type type of data named IntervalComparison. The set of
data is structured as a Binary Relation Algebra (BRA) [6]. So algebraic manipu-
lations are possible with IntervalComparison.

The choice of the IntervalComparison BRA is left to a future motion.

5.1. Interval Comparison prede�ned constants. In P1788 the following pre-
de�ned IntervalComparison constants must be provided

• The IntervalComparabilityRelation
• The EmptyRelation
• The IntervalEquality
• The generators of the BRA
• All the atomic relations of the BRA

Other prede�ned IntervalComparison constants may be provided. These addi-
tional constants must be members of IntervalComparison BRA. From each addi-
tional constant the atomic decomposition must be provided in the documentation.

5.2. Interval Comparison Handling functions. The following handling func-
tions must be provided

comparisonConverse:

• IntervalComparison7→IntervalComparison

• comparisonConverse(A) = Ac

comparisonComplement:

• IntervalComparison7→IntervalComparison

• comparisonComplement(A) = ¬A
comparisonJoin:

• IntervalComparison×IntervalComparison7→IntervalComparison

• comparisonJoin(A, B) = A ∪B
comparisonMeet:

• IntervalComparison×IntervalComparison7→IntervalComparison

• comparisonMeet(A, B) = A ∩B
comparisonComposition:

• IntervalComparison×IntervalComparison7→IntervalComparison

• comparisonComposition(A, B) = A�B
• The composition must be calculated from the abstract BRA de�nition
given by the atomic composition table. It must not be calculated using
computer interval calculations.

comparisonEquality:

• IntervalComparison×IntervalComparison7→Boolean

• comparisonEquality(A, B) = true if A and B admit the same atomic
decomposition. A and B may refer to di�erent computer objects.

• comparisonEquality(A, B) = false otherwise
comparisonInclusion:

• IntervalComparison×IntervalComparison7→Boolean

• comparisonInclusion(A, B) = true if all the atomic relations present
in the atomic decomposition of A are also present in the atomic de-
composition of B

• comparisonInclusion(A, B) = false otherwise

The possibility of providing these functions as operators is left to the implementa-
tion.
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5.3. Interval Comparison Use Functions. The following IntervalComparison
use functions must be provided:

comparisonApplication:

• IntervalComparison×Interval ×Interval7→Boolean

• comparisonApplication(R, A, B) = true if (A, B) ∈ R
• comparisonApplication(R, A, B) = false otherwise

comparisonExtraction:

• Interval ×Interval7→IntervalComparison

• comparisonExtraction(A, B) = R where R is the unique atomic re-
lation such that (A, B) ∈ R

These de�nitions are purely conceptual (Level 1). The translation to lower levels
is left to a future motion.
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