
DR
AF
T
6.2

Ch1 Draft 6.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.2

d. Not every interval encoding necessarily encodes an interval object, but when it does, that object
is unique. Each interval object has at least one encoding and may have more than one.

5. Flavors

5.1. Flavors overview. The standard permits different interval flavors, which embody dif-
ferent foundational (Level 1) approaches to intervals. An implementation shall provide at least
one flavor. For brevity, phrases such as “A flavor shall provide, or document, a feature” mean that
the implementation of that flavor shall provide the feature, or its documentation describe it.

Flavor is a property of program execution context, not of an individual interval, therefore just
one flavor shall be in force at any point of execution. It is recommended that at the language level,
the flavor should be constant at the level of a procedure/function, or of a compilation unit.

A flavor is identified by a unique name. Certain flavors, termed included, are specified in
this standard. The (list to be confirmed) flavors are the currently included flavors. The procedure
for submitting a new flavor for inclusion is described in Annex B. A conforming implementation
that provides one or more included flavors may also provide non-included flavors, without losing
conformance for the included flavors.

The flavor concept enforces a common core of behavior that different kinds of interval arith-
metic must share:

(i) The set of required operations, identified by their names, is the same in all flavors. Similarly
the set of recommended operations is the same in all flavors. See §??, ??.

(ii) There is a set of common intervals whose members are—in a sense made precise below—
intervals of any flavor.

(iii) There is a set of common evaluations of library operations, with common intervals as input,
that give—again in a sense made precise below—the same result in any flavor.

The result in item (iii) is a mathematically tightest (Level 1) result, ignoring any interval widening
due to finite precision (Level 2).

5.2. Definition of common intervals and common evaluations. The choice of the set
of common intervals, and the set of common evaluations of an operation, is a design decision that
defines the flavor concept. It should aim for simplicity, and the common evaluations should be
specified by a general rule that makes it easy to add a new operation to the library if needed. The
choice that was made is specified in the following paragraphs.

All likely flavors extend the classical Moore arithmetic [4] on the set IR of closed bounded
nonempty real intervals, and no other intervals belong to all of them. Hence, the chosen set C of
common intervals is IR.

The common evaluations are specified in terms of graphs of interval operations. For an interval
operation ϕ of arity k, its graph (in some flavor) is a subset of a (k+1)-dimensional space of
intervals, namely the set of interval (k+1)-tuples (x1,x2, . . . ,xk; y) such that ϕ(x1,x2, . . . ,xk) =
y is true in that flavor. Each such tuple is called an operation instance.

The general rule is that each ϕ has a set CE(ϕ) of common evaluations: operation instances
(x1,x2, . . . ,xk; y) such that all its components are in IR and

ϕ(x1,x2, . . . ,xk) = y shall hold in all flavors.

CE(ϕ) may be regarded as the flavor-independent graph of ϕ. For brevity, writing

the evaluation ϕ(x1,x2, . . . ,xk) = y is common, (1)

or the equivalent notation when ϕ is an infix operator (e.g., x1 + x2 = y), means that
(x1,x2, . . . ,xk; y) ∈ CE(ϕ).

The standard defines CE(ϕ) as follows.

Arithmetic operation: that is, an interval extension of the corresponding point function
ϕ. The common operation instances are those (x1,x2, . . . ,xk; y) such that the point
function ϕ is defined and continuous at each point of the closed, bounded, nonempty
box x = (x1,x2, . . . ,xk), and y equals the range of ϕ over this box. Then necessarily y
belongs to IR.

11 December 31, 2012

DR
AF
T
6.2

Ch1 Draft 6.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.4

Non-arithmetic operation: The common operation instances are those tuples with com-
mon inputs xi such that the result y is also common. In particular for convexHull,
the common operation instances are those (x1,x2; y) with arbitrary x1,x2 ∈ IR and y
equal to the convex hull of x1 ∪ x2. For intersection, they are those (x1,x2; y) with
arbitrary x1,x2 ∈ IR and y equal to x1 ∩ x2, provided the latter is nonempty (since
∅ /∈ IR).

[Examples.

– The evaluation [−1, 4]/[3, 4] = [−1/3, 4/3] is common; but [3, 4]/[−1, 4] = y is not common, for
any y ∈ IR.

– In the set-based flavor,
�
[−1, 4] = [0, 2]. But in the Kaucher flavor

�
[−1, 4] is undefined, so�

[−1, 4] = y cannot be common for any y. In fact CE(sqrt) is the set of all ([a, b]; [
√
a,
�

(b)])
for which 0 ≤ a ≤ b < +∞.

– Similarly, ([−1, 4] ∩ [5, 6] = ∅) in the set-based flavor, while ([−1, 4] ∩ [5, 6] = [5, 4]) in the Kaucher
flavor. Thus ([−1, 4] ∩ [5, 6] = y) cannot be common for any y.

– The above definition for arithmetic operations requires “ϕ is defined and continuous at each point
of x”, which is weaker (may give a smaller set CE(ϕ)) than “the restriction of ϕ to x is everywhere
defined and continuous”. E.g., the common evaluations of the function floor(x) are all ([a, b]; [k, k])
with k ∈ Z, k < a ≤ b < k + 1. Thus floor([1, 1.9]) = [1, 1] is not common, because floor() is not
continuous at 1, despite its restriction to [1, 1.9] being everywhere continuous.

]

5.3. Loose common evaluations. At Level 2, common evaluations are usually not com-
putable because of roundoff; instead, an enclosing interval of some finite precision interval type is
computed. The notion of a loose common evaluation of an operation ϕ takes account of this:
it is defined to be any

ϕ(x1,x2, . . . ,xk) = y� (2)

where ϕ(x1,x2, . . . ,xk) = y is common and y� is a member of IR containing y. A member of
CE(ϕ) may be called tight, to emphasize that it is not loose. The set of loose common evaluations
is uniquely determined by the set of (tight) common evaluations.

Informally, for a given ϕ and x = (x1,x2, . . . ,xk), the loose common evaluations describe all
closed bounded intervals that might be produced by evaluating an enclosure of Rge(ϕ |x) in finite
precision. [Note. Different qualities of enclosure are distinguished by the terms tightest (same as tight
in this context), accurate and valid introduced in §9.10.]

5.4. Relation of common evaluations to flavors. The formal definition of common eval-
uations takes into account that the common intervals are not necessarily a subset of the intervals
of a given flavor, but are identified with a subset of it by an embedding map.
[Examples.

A Kaucher interval is defined to be a pair (a, b) of real numbers—equivalently, a point in the plane
R2—which for a ≤ b is “proper” and identified with the normal real interval [a,b], and for a > b is
“improper”. Thus the embedding map is x �→ (inf x, supx) for x ∈ IR.

For the set-based flavor, every common interval is actually an interval of that flavor (IR is a subset
of IR), so the embedding is the identity map x �→ x for x ∈ IR.]

Formally, a flavor is identified by a pair (F, f) where F is a set of Level 1 entities, the intervals
of that flavor, and f is a one-to-one embedding map IR → F. Usually, f(x) is abbreviated to fx.

It is then required that operation compatibility shall hold for each library operation ϕ and for
each flavor (F, f). Namely, given x1,x2, . . . ,xk and y in IR,

If (x1,x2, . . . ,xk; y) is a common operation instance of ϕ,
then (fx1, fx2, . . . , fxk; fy) is an operation instance of ϕ in flavor F.

(3)

That is, if the evaluation ϕ(x1,x2, . . . ,xk) = y is common, then ϕ(fx1, fx2, . . . , fxk) must be
defined in F with value fy.

An evaluation in F of an expression, in which only (loose) common evaluations of elementary
operations occur, is called a common evaluation of that expression. That is, in a flavor (F, f), the
expression’s inputs are members of f(IR), and each intermediate value is produced by a common
evaluation of an operation so that it is also in f(IR); hence the final result is in f(IR).

12 December 31, 2012

DR
AF
T
6.2

Ch1 Draft 6.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §6.1

The com decoration makes it possible to determine, for a specific expression and specific interval
inputs, whether common evaluation has occurred, see Clause 6.

5.5. Flavors and the Fundamental Theorem. Suppose f is an arithmetic expression (does
not contain set operations such as intersection) so that it defines a real point function f(x1, . . . , xn),
and is evaluated in classical interval arithmetic over a box x = (x1, . . . ,xn) where the xi are in
IR. The classical FTIA (§2.3) can be stated in the following form:

If the evaluation is common then f is everywhere defined and continuous on x,
and the output y encloses the range of f over x.

This holds mathematically (at Level 1) using tight evaluations of individual operations in the
expression, and also in finite precision (Level 2), using loose evaluations.

It also is true, modulo the embedding map, in any flavor. That is, suppose inputs x∗
j ∈ F

are given to the expression, and evaluation gives output y∗ ∈ F. Suppose the inputs are common
intervals and it is known, via the decoration system or otherwise, that the evaluation was common.
Then one can map back to corresponding xj ∈ IR and y ∈ IR, and draw the conclusions of the
classical FTIA.
[Note. Besides this “minimal” FTIA for any flavor, which derives automatically from the classical FTIA
and the meaning of common evaluation, each of the set-based and Kaucher flavors has a more general
FTIA that contains the minimal FTIA as a special case. Note the Kaucher flavor has a generalized
meaning of the “contains” relation, which is used in stating its FTIA: [a, b] ⊇ [c, d] means (a ≤ c ∧ b ≥
d), whether [a, b] and [c, d] are proper or improper. Since the minimal FTIA, above, is defined by
mapping back to common intervals, it does not need to use such generalized notions.]

It is useful to consider when a flavor-independent result of common evaluation occurs. That is,
when does evaluating a given expression, over the “same” bounded nonempty box in two different
flavors, give identical results modulo the embedding map? At Level 1, this is always true if the
individual operation evaluations are tight. Also, an implementation may create conditions under
which it holds in finite precision, by the flavors “sharing” at Level 2 as follows:

– It provides some shared interval types, which represent exactly the same finite set of common
intervals in each flavor.

– It provides some shared library operations (on the shared types), which when acting on common
intervals have identical rounding behavior in each flavor, modulo the embedding map.

Then a common evaluation that only uses shared types and operations gives identical results in
both flavors, modulo the embedding map. More details are in §??.

6. Decoration system

6.1. Decorations overview. A decoration is information attached to an interval; the com-
bination is called a decorated interval. Interval calculation has two main objectives:

– obtaining correct range enclosures for a real-valued function of real variables;
– verifying the assumptions of existence, uniqueness, or nonexistence theorems.

Traditional interval analysis targets the first objective; decorated intervals, as defined in this stan-
dard, target the second.

A decoration primarily describes a property, not of the interval it is attached to, but of the
function defined by some code that produced the interval by evaluating over some input box.

For instance, if a section of code defines the expression
�
x2 + xy − 1, then decorated-interval

evaluation of this code with suitably initialized input intervals x,y gives information about the
definedness, continuity, etc. of the point function f(x, y) =

�
x2 + xy − 1 over the box (x,y) in

the plane.
The decoration system is designed in a way that naive users of interval arithmetic do not notice

anything about decorations, unless they inquire explicitly about their values. They only need

– call the newDec operation on the inputs of any function evaluation used to invoke an existence
theorem,

– explicitly convert relevant floating-point constants (but not integer parameters such as the p in
pown(x, p) = xp) to intervals,

and have the full rigor of interval calculations available. A smart implementation may even relieve
users from these tasks. Expert users can inspect, set and modify decorations to improve code

13 December 31, 2012

DR
AF
T
6.2

Ch1 Draft 6.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §6.3

efficiency, but are responsible for checking that computations done in this way remain rigorously
valid.

Especially in the set-based flavor, decorations are based on the desire that, from an interval
evaluation of a real function f on a box x, one should get not only a range enclosure f(x) but also
a guarantee that the pair (f,x) has certain important properties, such as f(x) being defined for
all x ∈ x, f restricted to x being continuous, etc. This goal is achieved, in parts of a program that
require it, by performing decorated interval evaluation, whose semantics is summarized as follows:

Each intermediate step of the original computation depends on some or all of the inputs, so
it can be viewed as an intermediate function of these inputs. The result interval obtained on each
intermediate step is an enclosure for the range of the corresponding intermediate function. The
decoration attached to this intermediate interval reflects the available knowledge about whether this
intermediate function is guaranteed to be everywhere defined, continuous, bounded, etc., on the
given inputs.

In some flavors, certain interval operations ignore decorations, i.e., give undecorated interval
output. Users are responsible for the appropriate propagation of decorations by these operations.

The function f is assumed to be expressed by code, an algebraic formula, etc.—generically
termed an expression—which can be evaluated in several modes: point evaluation, interval evalua-
tion, or decorated interval evaluation. The standard does not specify a definition of “expression”;
however, Annex C gives formal proofs in terms of a particular definition, and indicates how this
relates to expressions in some programming languages.

The P1788 decoration model, in contrast with 754’s, has no status flags. A general aim, as in
754’s use of NaN and flags, is not to interrupt the flow of computation: rather, to collate informa-
tion while evaluating f , that can be inspected afterwards. This enables a fully local handling of
exceptional conditions in interval calculations—important in a concurrent computing environment.

An implementation may provide any of the following: (i) status flags that are raised in the
event of certain decoration values being produced by an operation; (ii) means for the user to
specify that such an event signals an exception, and to invoke a system- or user-defined handler
as a result. [Example. The user may be able to specify execution be terminated if an arithmetic
operation is evaluated on a box that is not wholly inside its domain—an interval version of 754’s
“invalid operation” exception.] Such features are language- or implementation-defined.

6.2. Decoration definition and propagation. Each flavor shall document its set of pro-
vided decorations and their mathematical definitions. These are flavor-defined, with the exception
of the decoration com, see §6.3.

The implementation makes the decoration system of each flavor available to the user via
decorated interval extensions of relevant library operations. Such an operation ϕ, with interval
inputs x1, . . . ,xk carrying decorations dx1, . . . , dxk, shall compute the same interval output y as
the corresponding bare interval extension of ϕ—hence dependent on the xi but not on the dxi. It
shall compute a local decoration d, dependent on the xi and possibly on y, but not on the dxi. It
shall combine d with the dxi by a flavor-defined propagation rule to give an output decoration dy,
and return y decorated by dy.

The local decoration d may convey purely Level 1 information—e.g., that ϕ is everywhere
continuous on the box x = (x1, . . . ,xk). It may convey Level 2 information related to the particular
finite-precision interval types being used—e.g., that y, though mathematically a bounded interval,
became unbounded by overflow. For diagnostic use it may convey Level 3 or 4 information, e.g.,
how an interval is represented, or how memory is used.

If f is an expression, decorated interval evaluation of an expression means evaluation of f
with decorated interval inputs and using decorated interval extensions of the expression’s library
operations. Those inputs generally need to be given suitable initial decorations that lead to the
most informative output-decoration. A flavor shall provide a newDec function for this purpose.
If x is a bare interval, newDec(x) equals x with such an initial decoration. If x is a decorated
interval, the decoration is discarded and newDec applied to the bare interval part.

It is the responsibility of each flavor to document the meaning of its decorations, and the
correct use of these decorations within programs.

14 December 31, 2012

DR
AF
T
6.2

Ch1 Draft 6.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §7.0

6.3. Recognizing common evaluation. A flavor may provide the decoration com with the
following propagation rule for library arithmetic operations. In an implementation with more than
one flavor, each flavor shall do so.

In the following, ϕ denotes an arbitrary interval extension of a point library arithmetic opera-
tion ϕ, provided by the implementation at Level 2 (typically the one associated with a particular
interval type).

Let ϕ applied to input intervals x1,x2, . . . ,xk give the computed result y, and
let ϕ(x1,x2, . . . ,xk) = y be a loose common evaluation as defined in (2). If
each of the inputs xi is decorated com, then the output y shall be decorated
com.

Informally, com records that the individual operation ϕ took bounded nonempty input intervals and
produced a bounded (necessarily nonempty) output interval. This can be interpreted as indicating
“overflow did not occur”. Further, the propagation rule ensures that if the initial inputs to an
arithmetic expression f are bounded and nonempty, and are initialized with the decoration com,
then the final result y = f(x1,x2, . . . ,xk) is decorated com if and only if the evaluation of the
whole expression was common as defined in §5.4.

Flavors should define other decoration values, but com is the only one that is required to have
the same meaning in all flavors.
[Examples. Reasons why an individual evaluation of ϕ with common inputs x = (x1, . . . ,xk) may not
return com include the following.

Outside domain: The implementation finds ϕ is not defined and continuous everywhere on x.
Examples:

�
[−4, 4], sign([0, 2]).

Overflow: The Level 1 result is too large to be represented. Example: Consider an interval
type T whose intervals are represented by their lower and upper bounds in some floating
point format, let REALMAX be the largest finite number in that format, and x be the common
T-interval [0, REALMAX]. Then x+ x cannot be enclosed in a common T-interval.

Cost: It is too expensive to determine whether the result is too large to be represented. A
possible example is tan([a, b]) where [a, b] is of an interval type T as in the previous item,
and one of its endpoints is happens to be very close to a singularity of tan(x).

]

7. Conformance requirements

To be completed later.

15 December 31, 2012

