VARIOUS PROPOSED LISTS OF ELEMENTARY FUNCTIONS

JOHN PRYCE

1. Purpose of this document

As a basis for discussion of P1788 Motion 10, **I offer** a table that lists the elementary functions required or proposed in some actual or draft standards. The four basic arithmetic operations are not listed. At present it shows:

- (1) The functions in Jürgen's P1788 Motion 10. For this list only, I have distinguished between Y="required" and y="recomended" functions.
- (2) The functions in IEEE 754-2008. These are mainly from §9.2, with some from §5.4.
- (3) The functions proposed in the Brönnimann–Melquiond–Pion C++ interval standard proposal n2137 of November 2006.

Anyone who wishes to add another column is welcome to do so.

I suggest, hereby, a (friendly) amendment to Jürgen's motion, whereby each function on this list, and maybe some others, is/are voted for individually. So the "voting slip" contains a check-box opposite each function. Each voter puts Yes or No into each check-box, or abstains. (Should abstention count as No, or be ignored? I leave that to George Corliss.) Those that don't reach a certain level of support are dropped. Those that remain are put on a final list. At this point we re-check carefully for consistency, and choose the name each function will have in the P1788 text. This final list is voted for as a single motion.

Whether the accuracy mode (e.g. Vienna's tight, accurate or valid) can be chosen as part of the above, I do not feel competent to judge. I suspect we need a separate motion to decide if we like the Vienna scheme or something else. And that then some experts on elementary functions should propose a motion saying what accuracy is required of each function in the P1788 list.

2. Comments

Functions appropriate for a point-arithmetic standard may not all be so for an interval standard, and we should view the 754 list in that light.

Many functions are in all three lists and I doubt if we shall have much controversy about them—but what do I know? For those that don't appear in all, here's our chance to weigh priorities.

I don't have strong feelings, except to **remember K.I.S.S.** However:

- I feel sceptical about Jürgen's cos2, exp2, sin2; anyway, why is sin2 defined as $\frac{\sin(x) x}{x^2}$ and not $\frac{\sin(x) x}{x^3}$?
- If we have a function for $\frac{e^x-1}{x}$, surely there is no need of a separate one for e^x-1 ?
- How important are versions of the Gamma function and the Error function, for P1788? Will someone champion them?

Date: October 27, 2009.

2 JOHN PRYCE

• Personally I like 754's cosPi and related functions. E.g. one can use interval atan2 to find the angle subtended at the origin by a box. If the true result is, say, [something, $\pi/2$] then ordinary atan2 must increase the $\pi/2$ slightly to get a valid enclosure; whereas atan2Pi can report the upper bound exactly. For an algorithm that must check, say, that a box does *not* extend into the 2nd quadrant, this is a valuable simplification. (Some of my research has involved computing winding-numbers, for which this is relevant.)

Remember this motion is not concerned with "accuracy mode". Nor with the actual names we give to functions in the standard document.

I will be most grateful if people check my table for correctness, against the source documents. [List (1): Jürgen? List (2): Dan? List (3): Guillaume?]

3. The table

Function	(1)	(2)	(3)	Notes
abs(interval X)	У	У	У	
acos(interval X)	Y	У	У	
acosh(interval X)	Y	У	У	
asin(interval X)	Y	У	У	
asinh(interval X)	Y	У	У	
atan(interval X)	Y	У	У	
atanPi(interval X)		У		$\arctan(x)/\pi$
atanh(interval X)	Y	У	у	
atan2(interval Y,interval X)	Y	У	У	
atan2Pi(interval Y,interval X)		У		$atan2(y,x)/\pi$
cbrt(interval X)			У	cube root
ceil(interval X)	У			least integer $\geq x$
<pre>compound(interval X, int y)</pre>	У	У	У	$(1+x)^y$
cos(interval X)	Y	У	у	
cos2(interval X)	У			$(\cos(x) - 1)/x^2$
cosPi(interval X)		У		$\cos(\pi x)$
cosh(interval X)	Y	У	у	
cosh2(interval X)	У			$(\cosh(x) - 1)/x^2$
erf(interval X)			у	error function
erfc(interval X)			у	complementary error function
exp(interval X)	Y	У	у	
exp1(interval X)	У			$(e^x-1)/x$
exp2(interval X)		У	у	2^x
exp2(interval X)	У			$(e^x-1-x)/x^2$; note name-clash
exp10(interval X)		У		10^x
expm1(interval X)	У	У	У	$e^x - 1$
exp2m1(interval X)		У		$2^x - 1$
exp10m1(interval X)		У		$10^x - 1$
fdim(interval X,interval Y)			у	$\max(x-y,0)$
floor(interval X)	У			greatest integer $\leq x$
fma(interval X, interval Y,		У	у	fused multiply-add $xy + z$
interval Z)				

Table 1: Elementary functions required or proposed in some actual or draft standards. In column (1) a distinction is made between Y=required and y=recommended.

- (1) P1788 motion 10 (Vienna proposal is very similar).
- (2) IEEE Std 754-2008 (mainly from clause 9).
- (3) Draft C++ interval standard n2137.

Notes column describes underlying point function, when this is not obvious.

Function	(1)	(2)	(3)	Notes
gamma(interval X)			У	called tgamma in (3): this is also
				its C name
hypot(interval X,interval Y)	У	у	У	$\sqrt{x^2+y^2}$
<pre>ldexp(interval X,int y)</pre>		?	у	$x \times 2^y$
lgamma(interval X)			у	$\log \Gamma(x) $
log(interval X)	Y	у	у	natural log
log2(interval X)	Y	у	у	$\log_2(x)$
log10(interval X)	Y	У	у	$\log_{10}(x)$
logp1(interval X)	у	У	У	
log2p1(interval X)		У		$\log_2(1+x)$
log10p1(interval X)		У		$\log_{10}(1+x)$
max(interval X,interval Y)		У	У	
min(interval X,interval Y)		У	У	
<pre>pown(interval X,int y)</pre>	Y	У	У	x^y for integer y
<pre>pow(interval X,interval Y)</pre>	Y	У	У	x^y for real y
<pre>powr(interval X,int y,int z)</pre>	у			$x^{y/z}$ for integer y, z
root(interval X,int y)	у	У	У	$\sqrt[y]{x}$; called rootn in (2), nth_root
				in (3)
rSqrt(interval X)	У	У		$1/\sqrt{x}$
sign3(interval X)	У			sign, with values $-1, 0, 1$
sin(interval X)	Y	У	У	
sin2(interval X)	У			$(\sin(x) - x)/x^2$
sinPi(interval X)		У		$\sin(\pi x)$
sinh(interval X)	Y	У	У	
sinh2(interval X)	У			$(\sinh(x) - x)/x^2$
sqrt(interval X)	Y	У	У	
sqr(interval X)	Y		У	
tan(interval X)	Y	У	У	
tanh(interval X)	Y	У	У	

Table 1: Elementary functions required or proposed in some actual or draft standards. In column (1) a distinction is made between Y=required and y=recommended.

- (1) P1788 motion 10 (Vienna proposal is very similar).
- (2) IEEE Std 754-2008 (mainly from clause 9).
- (3) Draft C++ interval standard n2137.

Notes column describes underlying point function, when this is not obvious.