VARIOUS PROPOSED LISTS OF ELEMENTARY FUNCTIONS

JOHN PRYCE

1. PURPOSE OF THIS DOCUMENT

As a basis for discussion of P1788 Motion 10, I offer a table that lists the elementary functions
required or proposed in some actual or draft standards. The four basic arithmetic operations
are not listed. At present it shows:

(1) The functions in Jiirgen’s P1788 Motion 10. For this list only, I have distinguished
between Y=“required” and y=“recomended” functions.

(2) The functions in IEEE 754-2008. These are mainly from §9.2, with some from §5.4.

(3) The functions proposed in the Brénnimann—-Melquiond—Pion C++ interval standard
proposal n2137 of November 2006.

Anyone who wishes to add another column is welcome to do so.

I suggest, hereby, a (friendly) amendment to Jiirgen’s motion, whereby each function on
this list, and maybe some others, is/are voted for individually. So the ”voting slip” contains a
check-box opposite each function. Each voter puts Yes or No into each check-box, or abstains.
(Should abstention count as No, or be ignored? I leave that to George Corliss.) Those that
don’t reach a certain level of support are dropped. Those that remain are put on a final list. At
this point we re-check carefully for consistency, and choose the name each function will have in
the P1788 text. This final list is voted for as a single motion.

Whether the accuracy mode (e.g. Vienna’s tight, accurate or valid) can be chosen as part of
the above, I do not feel competent to judge. I suspect we need a separate motion to decide if we
like the Vienna scheme or something else. And that then some experts on elementary functions
should propose a motion saying what accuracy is required of each function in the P1788 list.

2. COMMENTS

Functions appropriate for a point-arithmetic standard may not all be so for an interval stan-
dard, and we should view the 754 list in that light.

Many functions are in all three lists and I doubt if we shall have much controversy about
them—but what do I know? For those that don’t appear in all, here’s our chance to weigh
priorities.

I don’t have strong feelings, except to remember K.I.S.S. However:

o I feel sceptical about Jirgen’s cos2, exp2, sin2; anyway, why is sin2 defined as

sin(x) — x sin(x) — x
x zs
. e’ — .
e If we have a function for ———, surely there is no need of a separate one for ¢ — 1 7

x
e How important are versions of the Gamma function and the Error function, for P17887
Will someone champion them?

Date: October 27, 2009.

2 JOHN PRYCE

e Personally I like 754’s cosPi and related functions. E.g. one can use interval atan?2 to find
the angle subtended at the origin by a box. If the true result is, say, [something, /2]
then ordinary atan2 must increase the 7/2 slightly to get a valid enclosure; whereas
atan2Pi can report the upper bound exactly. For an algorithm that must check, say,
that a box does not extend into the 2nd quadrant, this is a valuable simplification. (Some
of my research has involved computing winding-numbers, for which this is relevant.)

Remember this motion is not concerned with “accuracy mode”. Nor with the actual names
we give to functions in the standard document.

I will be most grateful if people check my table for correctness, against the source documents.
[List (1): Jirgen? List (2): Dan? List (3): Guillaume?]

3. THE TABLE

(

[\

Function

abs(interval X)
acos(interval X)
acosh(interval X)
asin(interval X)
asinh(interval X)
atan(interval X)
atanPi(interval X)
atanh(interval X)
atan2(interval Y,interval X)
atan2Pi(interval Y,interval X) atan2(y, z)/m
cbrt (interval X) y | cube root

—~
—_
~—

) | (3) | Notes

NN <9 <<

arctan(z)/m

I
<

N NN K<Y <Y<Y <

ceil (interval X) y least integer > x
compound (interval X, int y) y |y |y |(Q+az)Y
cos(interval X) Y|y |y

cos2(interval X) y (cos(x) — 1)/z?

cosPi(interval X) y cos(mx)

cosh(interval X) Y|y |y

cosh2(interval X) y (cosh(z) — 1)/

erf (interval X) y | error function
erfc(interval X) y | complementary error function
exp(interval X) Y|y |y

expl(interval X) y (e —1)/x

exp2(interval X) v |y |2

exp2(interval X) y (e® —1—x)/7?; note name-clash
expl0(interval X) y 10*

expml (interval X) vy |y |ef=1

exp2ml (interval X) y 2% —1

expl0ml (interval X) y 107 —1

fdim(interval X,interval Y) y | max(x —y,0)
floor(interval X) y greatest integer < x
fma(interval X, interval Y, v | v | fused multiply-add xy + z

interval Z)
Table 1: Elementary functions required or proposed in some
actual or draft standards. In column (1) a distinction is made
between Y=required and y=recommended.

(1) P1788 motion 10 (Vienna proposal is very similar).

(2) IEEE Std 754-2008 (mainly from clause 9).

(3) Draft C++ interval standard n2137.

Notes column describes underlying point function, when this
is not obvious.

VARIOUS PROPOSED LISTS OF ELEMENTARY FUNCTIONS

Function

1)

2)

3)

Notes

gamma (interval X)

hypot (interval X,interval Y)
ldexp(interval X,int y)
lgamma(interval X)
log(interval X)
log2(interval X)
logl0(interval X)
logpl(interval X)
log2pl(interval X)
loglOpl(interval X)

max (interval X,interval Y)
min(interval X,interval Y)
pown(interval X,int y)
pow(interval X,interval Y)
powr (interval X,int y,int z)
root(interval X,int y)

r3qrt(interval X)
sign3(interval X)
sin(interval X)

sin2(interval X)
sinPi(interval X)
sinh(interval X)
sinh2(interval X)
sqrt(interval X)
sqr(interval X)

tan(interval X)

tanh(interval X)

“

“ e

R

S

NN <Y<K<Y<<Y< < <

<

y
Yy

y

NN <Y<Y <9<

<< <

<

<

<< <

y

called tgamma in (3): this is also
its C name

T x 2Y

log [['(z)]

natural log

logy()

logyo()

log(1 + x); called loglp in (3)
log, (1 +)

logyo(1 +)

2Y for integer y

2Y for real y

2Y/% for integer y, z

Yx; called rootn in (2), nth_root
in (3)

1/Vz

sign, with values —1,0,1

(sin(z) — z)/2?
sin(7x)

(sinh(z) —) /22

Table 1: Elementary functions required or proposed in some
actual or draft standards. In column (1) a distinction is made
between Y=required and y=recommended.

(1) P1788 motion 10 (Vienna proposal is very similar).

(2) IEEE Std 754-2008 (mainly from clause 9).

(3) Draft C++ interval standard n2137.

Notes column describes underlying point function, when this

is not obvious.

