Hardware Support for Interval Arithmetic

Reinhard Kirchner, Universitat Kaiserslautern,
D-67653 Kaiserslautern
Ulrich W. Kulisch, Universitat Karlsruhe, D-76128 Karlsruhe

Summary: A hardware unit for interval arithmetic (including
division by an interval that contains zero) is described in this
paper. After a brief introduction an instruction set for interval
arithmetic is defined which is attractive from the mathematical
point of view. These instructions consist of the basic arithmetic
operations and comparisons for intervals including the relevant
lattice operations. To enable high speed, the case selections for
interval multiplication (9 cases) and interval division (14 cases)
are done in hardware. The lower bound of the result is computed
with rounding downwards and the upper bound with rounding
upwards by parallel units simultaneously. The rounding mode
must be an integral part of the arithmetic operation. Also the
basic comparisons for intervals together with the corresponding
lattice operations and the result selection in more complicated
cases of multiplication and division are done in hardware. There
they are executed by parallel units simultaneously. The circuits
described in this paper show that with modest additional hard-
ware costs interval arithmetic can be made almost as fast as
simple floating-point arithmetic.

1 Introduction

Interval mathematics has been developed to a high standard over the last
few decades. It provides methods which deliver results with guarantees.
However, the arithmetic on existing processors makes these methods slow.
This paper deals with the question of how interval arithmetic can effectively
be provided on computers. This is an essential prerequisite for the superior
and fascinating properties of interval mathematics to be more widely used
in the scientific computing community. With more suitable processors, rig-
orous methods based on interval arithmetic could be comparable in speed
to todays approximate methods. Interval arithmetic is a natural extension
to floating-point arithmetic, not a replacement for it. With increasing speed
of computers (gigaflops, teraflops, pentaflops) interval arithmetic becomes a
principal and necessary tool for controlling the precision of a computation
as well as the accuracy of the computed result.

In conventional numerical analysis Newton’s method is the key algorithm
for nonlinear problems. The method converges quadratically to the solution
if the initial value of the iteration is already close enough to it. However, it
may fail in finite as well as in infinite precision arithmetic even in the case
of only a single solution in a given interval. In contrast to this the interval
version of Newton’s method is globally convergent. It never fails, not even
in rounded arithmetic. Newton’s method reaches its ultimate elegance and
power in the Extended Interval Newton Method. It yields to enclosures of
all single zeros in a given domain. It is quadratically convergent. The key
operation to achieve these fascinating properties is division by an interval
which contains zero. It separates different zeros from each other. A method
which provides for computation of all zeros of a system of equations in a
given domain is very frequently applied. This justifies taking division by an
interval which contains zero into the basic set of interval operations, and
implementing it by the hardware of the computer.

To handle critical situations it is generally agreed that interval arithmetic
must be supplemented by some measure to extend the precision within a
computation. An easy way to achieve this is an accurate multiply and accu-
mulate instruction or, what is equivalent to it, an accurate scalar product.
With it quadruple or multiple precision arithmetic can easily be provided.
If the multiply and accumulate instruction® is implemented in hardware it is
very fast. The data can be stored and moved as double precision floating-
point numbers. Generally speaking, interval arithmetic brings guarantees
and mathmematics into computation, while the accurate multiply and accu-
mulate instruction brings higher (dynamic) precision and accuracy. Hard-
ware support for the accurate multiply and accumulate instruction is dis-
cussed in the first chapter of the book [9].

The present paper is written for the hardware engineer who is supposed
to implement the circuitries on a future processor. Our main intention,
therefore, is to keep the paper simple, short, and selfcontained. The ba-
sic formulas for interval operations and comparisons are already carefully
derived in the two books [5] and [6] of the second author. Division by an in-
terval which contains zero is implemented using formulas which are derived
in the paper [7].

For the near future the authors do not expect that a completely new in-
struction set architecture will grow within the present market of desktop
and server computers. Thus in this paper hardware support for interval
arithmetic is developed in a way which allows an easy incorporation into
existing processors whithout any need to change the operating system.

YHere multiply and accumulate means continued accumulation of products, in contrast
to 'multiply and add’.

During the last decade a fair amount of research has been done on various
aspects of hardware support for interval arithmetic. A number of relevant
papers is listed under References. The present paper gives a complete solu-
tion to the problem.

2 An Instruction Set for Interval Arithmetic

From the mathematical point of view the following instructions for interval
operations and comparisons are desirable. In the following A = [a1, ag]
and B = [b1, bs] denote interval operands, and C' = [c1,c2| denotes the
result of an interval operation. For the operations o € {+,—,-,/} with
rounding downwards or upwards the symbols ¥V, A o € {+,—,-, /}, are used
respectively.

2.1 Algebraic Operations

Addition C := [a1Vb, asAbs]
Subtraction C := [a1Vby, asAb]
Multiplication
b1 >0 by <0< by by < 0
ar >0 [a1Vb1, agAbs] [a2Vb1, agAbs] [a2Vb1, a1Abs]

[min(a1Vb2, a2V51)7

a1 < 0<as [a1Vby, asAb
1 < ag [01Vby, azby] max (a1 Aby, agAby)]

[CLQVbl, a1Ab1]

az <0 [a1Vby, aAby] [a1Vba, a1 Abi] [a2\/ba, a1 Ab]
Division
0¢B
b1 >0 by <0
a; >0 [a1Vby, asNby] [agVbe, a1 /Ab]
a1 <0<ay [a1Vb1,as\b1] [aaVba, a1 Abs]
as <0 [a1V/b1, agAba] [aaVby, a1/Mbs]

0eB
by =by=0 by <by=0 by <0< by 0=0>b1 < by

as <0 [—i—NaN, —NaN]l [GQWbl, +OO] [GQWbl, agﬁbg]Q [—OO, agﬂbg]
a1 <0<az [-00,+00] [-00,+00] [—00, +00] [—00, +00]
a; >0 [+NaN, —NaN]! [—o0o,a1Aby] [a1Vbs, a1/Abi]? [a1 Wby, +00]

In the table for division by an interval which contains zero the notation
[+NaN, —NaN] is used to represent the empty interval. Since the result of an
interval operation is supposed to always be a single interval again, the results
which consist of the union of two intervals are delivered and represented as
improper intervals [aaVby, aa/Abs] and [a;Vba, a1 /Aby]. In these particular
cases the left hand bound is higher than the right hand bound.

2.2 Comments on the Algebraic Operations

Except for a few cases in the table for division by an interval which contains
zero, the lower bound of the result is always obtained with an operation
rounded downwards and the upper bound with an operation rounded up-
wards. Multiplication and division need all combinations of lower and upper
bounds of input intervals depending on the signs of the bounds. Thus an
operand selection has to be performed before the operation can be executed.
However, in all cases of computing the bounds of the result interval the left
hand operand is a bound of the interval A = [a1,a2] and the right hand
operand is always a bound of the operand B = [b1,bs]. Thus the operand
selection can be executed for the bounds of A and B separately.

In one special case (0 € A and 0 € B) multiplication requires the computa-
tion of two result pairs. Then the interval hull of these is taken.

In the case that 0 € B division may produce various special results like 400,
—oo or the empty interval.

2.3 Comparisons and Lattice Operations

c is a value of type boolean.

equality c:= (a1 = b1 Aag = b2)

!special encoding of empty interval
%special encoding of result [—oo, c2] U [c1, +09]

less than or equal c:= (a3 <b; Aag < bg)

greatest lower bound C := [min(a,b;), min(ag, b2)]
least upper bound C := [max(a, b1), max(az, bs)]
inclusion c:= (b; < a3 Aaz < by)

element of c¢:= (b; <aAa < by), special case of inclusion
interval hull C := [min(a1, b1), max(ag, b2)]

intersection C' := [max(a1,b1), min(ag,bs)] or empty interval (encoded
[+NaN, —Nal]

check interval branch on a; > as (checking for proper interval)

2.4 Comments on Comparisons and Lattice Operations

For comparisons and lattice operations no shuffling of bounds is needed.
All combinations of minimum and maximum of lower and upper bounds do
occur.

In IEEE arithmetic the bit string of nonnegative floating-point numbers
can be interpreted as an integer for comparison purposes. Computation of
minimum or maximum is comparison and selection.

Intersection and checking for an improper interval needs a comparison of the
lower and the upper bound of the result interval. In all other cases the lower
and the upper bound of the result interval can be computed independently.

3 General Circuitry for Interval Operations and
Comparisons

3.1 Algebraic Operations

We assume that the data are read from and written into a register file or
a memory-access-unit. Each memory cell consists of 128 bits for pairs of
double precision floating-point numbers holding the lower and upper bound
of an interval. Intervals are moved within the unit via busses of 128 bits.

There are three such bus systems in the interval arithmetic unit, one for the
operand A = [a1, as], a second one for the operand B = [b1, bs], and a third
one for the result C' = [c1, c2]. The interval arithmetic unit consists of two

major parts, one to perform the operand selection and the operations, the
other to perform comparisons and result selection. See Figure 1.

‘C =[cq.cal v Register-File (or Memory-Access-Unit) 64-bit
0 for Intervals
: Lower Upper (pairs of reals)
| 15 l l Operand A = [a4, a5] a,
A-Bypass 3 Operand B = [by,by] by a
k 2 x
3 b,
v v v v v v v v
a; | a | b . by ay : by [a : by
Operand-Selection Result-Selection
and and
Operations Comparisons
G C2
B-Bypass
v Result
L 2

Figure 1: General circuitry for interval operations and comparisions.

An operation is performed as follows: The operands A = [a1,as] and B =
[b1, bo] are read from the memory onto the A-bus and B-bus and forwarded
to the Operand-Selection and Operations Unit. Here from the lower and
upper bounds of the operands multiplexers select various combinations of
values depending on the operation, and on signs and nulls of all four values.
Finally a pair of operations ¥V and A, o € {+,—,-,/}, is performed on
the selected values, one with rounding downwards and one with rounding
upwards. See Figure 2. In many cases the computed values are already
the desired result C' = [c1, c2]. In these cases the result is forwarded to the
memory via the C-bus. But there are exceptions, as for instance in the case
of multiplication where both operands contain zero, or in the case of division
by an interval that contains zero. See the tables in Section 1. In these cases
the computed values are forwarded to the Comparison and Result-Selection
Unit for further processing.

The selector signals 041, 042, 0p1, and ope control the multiplexers. The
Operand-Selection and Operations Unit performs all arithmetic operations.

In the case of addition just the lower bounds of A and B are added with
rounding downwards and the upper bounds are added with rounding up-
wards [a1Vby, agAbs]. The selector signals are set to 0,1 = 0, 042 = 1,
op1 = 0, and op = 1.

In the case of subtraction the bounds of B are exchanged by the operand
selection. Then the subtraction is performed, the lower bound is computed
with rounding downwards and the upper bound with rounding upwards

[a1Vby, agAby]. The selector signals are set to 041 = 0, 042 = 1, 0p1 = 1, and
Op2 = 0.

Operand A Operand B

[] ay [] ap (] by [] by

<] Pl «J P

Sat Sa2 Sp1 ! Sp2

Za1 Zgo Zp1 Zb2

Control-Signals:
s: Sign
z: Zero

| | o: Operand-Select |

Op1

byl by

a by

(Intermediate)
Result

by

Figure 2: Operand Selection and Operations Unit.

Multiplication is a little more complicated. The various multiplications
are performed in the following way:

If both operands A and B do not contain zero (sq1 - Sa2 - Sp1 - Spz = 0)

then the bounds are shuffled, the result [a1Vb;, aa/Abs] is computed
with the selected bounds, and delivered to the target via the C-
bus.

else 1. The bounds are shuffled for the first multiplication by operand
selection, the first partial result [a;1Vbe, a1 Ab;] is computed,
and it is forwarded to the Comparison and Result-Selection
Unit via the A-bus.

2. The bounds are shuffled for the second variation by operand
selection, the second partial result [aaVbi, aaAAbs] is com-
puted, and it is forwarded to the Comparison and Result-
Selection Unit via the B-bus.

3. In the Comparison and Result-Selection Unit the hull of the
two multiplications is selected and as final result delivered to
the target via the C-bus.

In the case of multiplication the multiplexers are controlled by the following
selector signals:?

0gl = Sp2 + Sq1 - Sp1 + M 062 = Sp1 + Sal - Sp2 + MS
op1 = T5(Sa2 + Sa1 - Sb2) 0b2 = Sa1 + 542 - Sp1 + MS

These signals are computed by the signs of the bounds of the interval
operands A = [a1,a2] and B = [by,ba]. In the expressions the signal ms
is zero in the case 1. and it is one in the case 2. of the conditional statement
above.

In the case of multiplication every operand selector signal can be realized
by two or three gates!

Division is a little simpler than multiplication. It is organized following a
similar pattern :

If B does not contain zero (Sp1 - Zp1 + Sp2 = 1)

then the bounds are shuffled, the result [a1Vby, asAbs] is computed
with the selected bounds, and delivered to the target via the C-
bus.

else 1. The bounds are shuffled, the arithmetic operation [a;Vb]
or [ag/Aby] is computed with the selected bounds, and it is
forwarded to the Comparison and Result-Selection Unit to-
gether with the selection code for special values.
2. In the Comparison and Result-Selection Unit the result is
generated from arithmetic values and/or special values (—oo|
+ NaN| + oo| — NaN), and it is forwarded to the target via the
C-bus.

The operand selection is controlled by the following selector signals:

0a1 = Sp2 + Sal - Sp1 0q2 = Sp1 + Sa2 * Sb2

Ob1 = Sq1 1 542 * Sb1 Ob2 = 5a2 1 Sal * Sp1
In the case of division every operand selector signal can be realized by two
gates!

In the cases of division by an interval which contains zero the result is an
improper interval where one or both bounds is not a real number or where

ZNote: A negative sign is a 1. A bar upon a logical value means inversion. In the
expressions a dot stands for a logical and, and a plus for a logical or.

the left hand bound is higher than the right hand bound. In Newton’s
method, for instance, the following operation then is an intersection with a
regular interval. Treatment of this and similar cases is left to software. The
instruction check interval supplies a test for improper intervals.?

3.2 Comparisons and Result-Selection

In this unit comparisons and minima and maxima are to be computed.
We mention again that in IEEE arithmetic the bit string of nonnegative
floating-point numbers can be interpreted as an integer for comparison pur-
poses. Computation of a minimum or maximum consists of a compare plus
selection. Thus the arithmetic that has to be done in this unit is relatively
simple. Again the computation of the lower bound and the upper bound
of the result is done in parallel and simultaneously. No bound shuffling is
necessary in this unit. See Figure 3.

The comparisons for equality, less than or equal and set inclusion are
done by comparing the bounds, combining the results and setting a flag in
the state register. For the operation element of an interval [a,a] is built
in software. Then a test for inclusion is applied.

The minimum and maximum computations for the operations greatest
lower bound, least upper bound, interval hull, and the result selec-
tion in the case of multiplication where 0 € A and 0 € B are executed by
comparing the bounds and selecting the higher and the lower, respectively.
Then the result is delivered to the target.

The computation of the intersection is a little more complicated. First the
bounds of the operands are compared and the higher lower bound and the
lower upper bound are selected. If max(aj,b;) < min(ag,bs), the intersec-
tion, which is the interval [max(ai,b;), min(ag, by)] is delivered to target.
Else the empty interval is delivered. It is represented by [+NaN, —NaN].

In the case of division by an interval which contains zero, an interval with
bounds like +NaN, —oo, —NaN, +o00 has to be delivered. These alternatives
are selected in the Comparison and Result-Selection Unit.

Now we give the various selector signals that appear in Figure 3.

3Within the given framework of existing processors only one interval can be delivered
as result of an operation. Other solutions which use special registers or flags or new
exceptions would require an adaption of the operating system.

Lower Bounds Upper Bounds

[a; 2 Vb] by a, Vb [1 a, ajAb] b, ayAby]
Control Signals:
q equality
| less-than
X sel. Maximum
m mux-contr.
4 1« a1 <by is Intersectnst. o G2+ azsbp
< ‘ v Valid Intervall < I
n gen. NaN
X1 0 1 i gen. Infinity X2 0 1
my ma
max(a1,b1) min(aZst) Remark:
|IEEE-Floats may
pe compared like
oy o +NaN integers
Result
L 1 [C2 |
Figure 3: Comparisons and Result Selection Unit.
n = n1=n2=(Zal - Sal - Saz + Sa2) * 22 * Sb1 3 Gates
11 = Zal " 21 + Zal - Sb1 " 5b2 + Sal - Sa2 - Sb1 - b2 7 Gates
+5a2 * Zp1 * Zb2 + Sal " Zp1 * 262 T Sal * Sa2 * b1
12 = Z2q1° 21 1 Zal " Sp1* Sb2 + Sal * Sa2 * Sbl - Sp2 4 Gates
+5Sq1 - Sa2 - 2p1 + 542 - b1 c Zp2 + Sa2 * 2bl * 2a2 (common subexpressions)
& = is-ip
2/2 = 15-19
n = n=no=1s-n+n-v

The logical expressions given in this section were developed from function
tables of up to several hundred entries. Then minimization was performed
which leads to the equations given. We do not replicate the tables and the
minimization here because all this is a standard procedure in circuit design.
The function tables contain a high amount of don’t care entries which allows
realization with a very small number of gates. (Since the dont’ care entries
may be used during minimization in different ways various designs may end
up with different equations of equal complexity)

10

4 Alternative Circuitry for Interval Operations and
Comparisons

In Figure 2 the operand selection and the execution of the interval operations
together form the Operand Selection and Operations Unit. This is justified
since the time needed for the operand selection is negligible in comparison
to the time needed to perform the arithmetic operations.

It may, however, be useful to separate the operand selection from the op-
erations. Separation into two units would make it easier to use these for
other purposes. Examples are ordinary arithmetic or shuffling of parts of
the operands. Many processors are being built which provide already several
independent arithmetic units (super scalar processors). These then easily
may be used as part of the interval operations unit. Figure 4 shows a cor-
responding circuit for interval operations and comparisons.

10 =lcq.cal J Register-File (or Memory-Access-Unit) — 64-bit
0 for Intervals
: Lower Upper (pairs of reals)
| l l Operand A = [a4, a5] a,
A 4 A 2
A-Bypass 4 operand B=[b; b, [b, a
A 4
7'} b4 A
v v v v v v v v v v v
a; a | by T b a; Dby as ' b a; . by [a by
Operand-Selection a; Vb, a,Ab, Result-Selection
a - _a | b T b Cq Co
[—|
B-Bypass o€ {+,-,%/}
) 4 \ 4 Result \ 4

Figure 4: General circuitry for interval operations and comparisons.

The Operand Selection Unit and the Operations Unit then would look as
shown in Figure 5 and Figure 6. We will not discuss these circuits in further
detail. Their functionality should be clear from what has been said already.

11

Operand A Operand B
[ay [] ap [by [] by
gJ] o P
at Sa2 Sb1 Sb2
Za1 Za2 Zpf Zb2
Control-Signals:
s: Sign
z: Zero
I I o: Operand-Select
4\\ 0 1 0 1 0 : 0 1
Ou1 0,2 Op1 Op2
aq azl ‘ |a1| a, byl b2 byl bz
L aj] ay | L] by [by

Intermediate Operand A

Intermediate Operand B

Figure 5: Operand Selection Unit.

Lower Bounds

[ay

b

Upper Bounds

ap [] [

aq Vb1

—

32Ab2

(Intermediate)
Result

Figure 6: Arithmetic Operations Unit.

12

5 Closing Remarks

In summary it can be said that a hardware unit for fast interval arithmetic
has a very regular structure. Interval arithmetic is just regular arithmetic for
pairs of reals with particular roundings, plus operand selection, plus clever
control.

It is interesting to note that most of what is needed is already available on
current x86-processors. Figure 7 shows figures from various publications by
Intel.
127 64 63 0
X2 X1

Figure 6. Packed double precision floating-point data type

| X1 | X0 |
| Y1 | Y0 |
v
oP oP
| X1 or Y1 | X0 or YO |

Figure 11-3. Packed Double-Precision Floating-Point Operation

DEST | X1 | X0 |
SRC | Y1 | Y0 |
DEST| Y1 or YO | X1 or X0 |

Figure 11-5. SHUFFD Instruction Packed Shuffle Operation

Figure 7: Figures from various Intel publications.

On an Intel Pentium 4, for instance, eight registers are available for words
of 128 bits (xmm0, xmml, ..., xmm?7). The x86-64 processors even pro-

13

vide 16 such registers. These registers can hold pairs of double precision
floating-point numbers. They can be viewed as bounds of intervals. Parallel
operations like 4+, —, -, /, min, max, and compare can be performed on these
pairs of numbers. What is not available and would be needed is for one of
the two operations to be rounded downwards and the other one rounded
upwards. The last picture in Figure 7 shows that even shuffling of bounds is
possible under certain conditions. This is half of operand selection needed
for interval arithmetic. Also nearly all of the data paths are available on
current x86-processors. Thus full hardware support of interval arithmetic
would probably add less than 1%, more likely less than 0.1% to a current
Intel or AMD x86 processor chip.

Full hardware support of fast interval arithmetic on RISC processors may
cost a little more as these lack pairwise processing. But most of them have
two arithmetic units and use them for super scalar processing. What has to
be added is some sophisticated control.

There are still some interesting questions and work that should be done.
Runtime statistics of interval instructions would be interesting, also the
development of typical benchmark programs.

Acknowledgement: The authors gratefully acknowledge the help of Neville
Holmes who went carefully through the manuscript, sending back corrections
and suggestions that led to many improvements.

References

[1] Akkas, A.: Instruction Set Enhancements for Reliable Computations,
Ph.D. Dissertation, Lehigh University, January 2002.

[2] Akkas, A.: A Combined Interval and Floating-point Compara-
tor/Selector, IEEE 13th International Conference on Application-
specific Systems, Architectures and Processors, pp. 208-217, San Jose,
USA, July, 2002.

[3] Chiriaev, D. and Walster, G. W. Interval — Arith-
metic Specification, available from Internet URL
http://www.mscs.mu.edu/~globsol /readings.html, 1998.

[4] Kolla, R.; Vodopivec, A.; Wolff v. Gudenberg, J.: The IAX Archi-
tecture - Interval Arithmetic Extension, Report No. 225, Institut fuer
Informatik, Universitaet Wuerzburg, 1999.

14

[5] Kulisch, U.: Grundlagen des numerischen Rechnens - Mathema-
tische Begrindung der Rechnerarithmetik, Bibiographisches Institut,
Mannheim, Wien, Zuerich, 1976.

[6] Kulisch, U. and Miranker, W. L.: Computer Arithmetic in Theory and
Practice, Academic Press, 1981.

[7] Kulisch, U.: Interval Arithmetic Revisited. This paper is published in
the two books [9] and [8].

[8] Kulisch, U. W.; Lohner, R.; Facius, A. (eds.): Perspectives on Enclosure
Methods, Springer-Verlag, Wien, New York, 2001.

[9] Kulisch, U.: Advanced Arithmetic for the Digital Computer - Design of
Arithmetic Units, Springer-Verlag, Wien, New York, 2002.

[10] Stine, J. E.; Schulte, M. J.: A Combined Interval and Floating Point
Multiplier, Proceedings of the 8th Great Lakes Symposium on VLSI,
Lafayette, LA, pp. 208-213, February, 1998.

[11] Schulte, M. J. and Swartzlander, E. E. Jr.: A Family of Variable-
Precision, Interval Arithmetic Processor, IEEE Transactions on Com-
puters, No. 5, Vol. 49, pp. 387-398, May, 2000.

[12] Stine, J. E.: Design Issues for Accurate and Reliable Arithmetic, Ph.D.
Dissertation, Lehigh University, January 2001.

[13] Stine, J. E.; Schulte, M. J.: A Case for Interval Hardware on Super-
scalar Processors, in Scientific Computing, Validated Numerics, and
Interval Methods, pp. 53-68, Kluwer Academic Publishers, 2001.

[14] Wolff v. Gudenberg, J.: Hardware Support for Interval Arithmetic, in
Scientific Computing and Validated Numerics, Proceedings of the In-
ternational Symposium on Scientific Computing, Computer Arithmetic
and Validated Numerics - SCAN 95, Kluwer Academic Publishers,
1996.

Contact: Kirchner@informatik.uni-k1.de
Ulrich.Kulisch@math.uka.de

15

