
1

Exception Handling for Interval Arithmetic

--

This motion specifies generalities about exception handling for

interval arithmetic.

1. Definitions

1.1. A bare interval is either a standard interval, i.e., an

element of overline-IR as specified in Motions 5 and 6, or a

nonstandard interval, whose detailed specification will be a

matter of a later motion. (One possible later decision might be

to have no nonstandard intervals; then the current distinction

between bare intervals and standard intervals would not be

needed.)

1.2. A bare decoration is a list of decoration trits with

possible values +, -, and 0, characterizing part of the history

of a computation (see the rationale for possibly useful

decoration trits). The values + and - of a decoration trit make

opposite certainty claims about an associated property; the

value 0 indicates the lack of certainty about the property. A

"new" standard interval created from a constructor has a no-0

decoration of the appropriate form. The all-0 decoration is

least informative.

1.3. A decorated interval consists of exactly one interval and

one decoration; it is standard iff the interval part is

standard.

1.4. For simplicity, we refer to a bare interval or bare

decoration just as an interval or decoration, respectively,

except when the bareness is to be emphasized.

2

2. Motion Text

2.1. P1788 provides

 -- bare intervals;

 -- bare decorations;

 -- decorated intervals;

 -- arithmetic operations defined on intervals, decorations,

 and decorated intervals; and

 -- forgetful operations that drop either the decoration or the

 interval from a decorated interval.

2.2. An operation on standard decorated intervals returns a

standard decorated interval whose interval is the result of the

operation on the argument intervals, and whose decorations are

computed from the arguments such that they retain the most

informative and valid information about the interval. All result

decorations will be completely specified (later) according to

the intended semantics of the decoration trits.

2.3. An operation on bare decorations is obtained by promoting

the bare decorations to decorated intervals whose intervals are

the empty set and then performing the operation with the

resulting decorated intervals.

2.4. An operation on bare intervals is obtained by promoting the

bare intervals to decorated intervals whose decorations are all-

0 and then performing the operation with the resulting decorated

intervals (if any further promotion rules are required, they

will be specified and voted on in another motion).

2.5. Forgetful operations behave as specified above except they

throw away either the interval or decoration portion of the

result.

3. Rationale

3.1. This motion uniformly handles all arithmetic and

nonarithmetic exceptions that are relevant for interval

arithmetic and its applications. It eliminates the need for

separate global sticky flags, and integrates non-intervals

(NaI), without introducing any overhead for users who don't make

use of exceptions.

3

3.2. Recent discussion in the P1788 forum showed that some

interval algorithms require decorated intervals while others

only require intervals and/or decorations (or NaI's). There are

various implementation and performance tradeoffs to be gained or

lost by restricting interval computations to only one of these

types of objects. These tradeoffs may depend on available

(present or future) platforms, hence the choices should be left

to implementors for exploitation, rather than be fixed by the

standard.

The framework presented in this motion also unifies the concept

of NaI and Empty in a semantically correct way. For example,

given any non-empty interval X,

 X \union Empty = X

is usually the case. However, depending on the history that

created Empty, some applications may need

 X \union Empty = Empty,

which is the same semantics as NaI, i.e.,

 X \union NaI = NaI.

This can be neatly handled by decorations.

3.3. Only minimal requirements for a consistent behavior of

decorations are fixed by this motion. The 3-valuedness of

decoration trits is needed to have a clear way of organizing the

deterioration of antagonistic information. Just as one cannot

avoid overestimation in intervals, one cannot avoid getting less

and less informative decorations if different decorations are to

be combined. Since a bare interval has lost its decoration, it

must be assumed to possibly have the worst decoration, and this

will propagate when combined with a bare decoration.

3.4. Useful candidates for decoration trits are:

 isValid possiblyValid notValid

 isStandard possiblyStandard notStandard

 isEmpty possiblyEmpty notEmpty

 isEntire possiblyEntire notEntire

 isBounded possiblyBounded notBounded

 isDefined possiblyDefined notDefined

 isContinuous possiblyContinuous notContinuous

 isTight possiblyTight notTight

These fit exactly into 2 bytes if each trit is represented by

two bits.

3.5. Some things this motion specifically does not do (but some

of which need to be decided later):

4

 -- define the choice, semantics, or concrete representation of

 the decoration trits;

 -- define all details of how operations on intervals,

 decorations, and decorated intervals behave;

 -- define the forgetful operations or how they behave;

 -- define requirements for (or the presence of) nonstandard

 intervals;

 -- define how decorated intervals are to be represented in a

 concrete format; and

 -- define an interchange format for decorated intervals.

Regarding the last two items, a concrete representation format

is specific to each implementation; the interchange format is

what is written into a file for exchange with a possibly

different implementation. The latter should be standardized; the

former should not be to give maximal freedom to implementors. In

either case, the present motion is agnostic on these issues, and

such decisions will be subject of future motions.

