
Trits to Tetrits

Nathan T. Hayes, Sun�sh Studio, LLC
P1788 Working Group

April 26, 2010

Abstract

This paper presents a view of tetrits that clari�es certain aspects of
Motion 8 by providing explicit de�nitions and mappings. In particular,
Level 1 de�nitions are provided as well as explicit Level 2 mappings. The
requirements of a reliable exception handling mechanism for interval arith-
metic are explored, and the useful role of tetrits in such a framework is
examined.

1 Introduction

The interesting idea of a �tetrit�recently came up in the P1788 forum. What
exactly is a tetrit and how do tetrits �t into the role of exception handling for
interval computations? These are questions to be answered, and discussions on
the subject have already been generated.
Among the other perspectives being looked at, this paper presents one view

of a tetrit aimed at simplifying and clarifying exception handling semantics
described in Motion 8. At the same time it shows tetrits are a natural �comple-
tion�of the trit concept and �t nicely into exception handling semantics. Some
examples are given in the last section.

2 Tetrits

2.1 Level 1 De�nition of a Tetrit

For any real function f : Rn ! R, a tetrit is a pair (P+; P�) of two existentially-
quali�ed propositions P+ and P� that make opposite assertions about some
property P of the function f over the interval domain X 2 IRn

. Since each of
the propositions P+ and P� must be true (T ) or false (F ), a tetrit represents
one of four possible states and is therefore an element of the set

f(F; F ); (F; T ); (T; F ); (T; T )g: (1)

The notation P (f;X) is shorthand for the tetrit (P+; P�) of the property P of
the real function f over the interval domain X 2 IRn

.

1



2.1.1 Natural Domain of a Function

If Df � Rn is the natural domain of a real function f : Rn ! R, then for any
interval X 2 IRn

the �domain� tetrit D(f;X) = (D+; D�) is de�ned by the
truth-values of the propositions

D+ () there exists x 2 X such that x 2 Df (2)

D� () there exists x 2 X such that x =2 Df . (3)

2.2 Level 2 Exception Handling

Like the trits described in Motion 8, the four states of a tetrit (P+; P�) are
totally ordered1 by the priority mapping:

Priority (P+; P�) For all x 2 X, the property P is...
3 (T; F ) Everywhere true
2 (T; T ) Somewhere true, somewhere false
1 (F; T ) Everywhere false
0 (F; F ) Nowhere true, nowhere false

The priority of a tetrit represents a guarantee about the history of a computation
up to and including the result of the most recent operation. More speci�cally,
the priority of a tetrit is a guarantee that no operation in the history of a
computation produced a resulting tetrit of lower priority. When propagating
tetrits through a computation, the resulting tetrit of any arithmetic operation
is necessarily the in�mum priority of all tetrits of the operands as well as all
new tetrits of the operands w.r.t. the current operation.2

De�nition 1 If P (f;X) is the tetrit (P+; P�) of the property P of the real
function f : Rn ! R over interval domain X 2 IR

n
, then for operands

(X1; P1); (X2; P2); : : : ; (Xn; Pn) of f , where each (Xi; Pi) is a decorated interval
comprised of interval Xi and tetrit Pi, the resulting tetrit of the entire operation
is inf (inf (P1; P2; : : : ; Pn) ; inf (P (f;X1); P (f;X2); : : : ; P (f;Xn))).

2.2.1 The �Domain�Tetrit

P1788 decorations may have a �domain�tetrit (D+; D�). As mentioned above,
the resulting domain tetrit of any arithmetic operation is the in�mum priority
of all domain tetrits of the operands as well as all new tetrits of the operands
w.r.t. the current operation. A few detailed examples are given in the next
section.

1Motion 8 only considers trits, which are elements of the totally ordered set f�1; 0; 1g.
The concept of a tetrit is a newer development, introduced in the P1788 forum by Dan Zuras.
The priority states 1, 2, and 3 of a tetrit are the same as the states -1, 0, and 1 of a trit,
respectively.

2Not all decoration attributes and their respective tetrits have yet been studied by P1788,
e.g., the �bounded� or �continuous� attributes. Some assumption is therefore made for the
time being.

2



Figure 1: Syntax Tree

3 Rationale

Exception handling as it pertains to interval computations is the mechanism of
propagating �exceptional�events through a computation. Consider the syntax
tree depicted in Figure 1 of the example

f(x; y) = sqrt(sqrt(x� y)� 2)� x. (4)

Starting at the leaf nodes of the tree, operands are provided as input, operations
are performed, and results are propagated up the tree to the root.
A useful exception handling mechanism follows this concept by propagating

exceptional information up the tree as well as numeric results. For example,
information about operations evaluated outside their natural domain may be
tagged as an exceptional event, and this information will propagate up the tree
to the root. For an exception handling mechanism to be reliable, the exceptional
information must not be lost in the history of the computation once an exception
occurs; hence the notion that propagating exception information is �sticky.�

3.1 Trits and Tetrits

Motion 8 trits are elements of the totally ordered set f�1; 0; 1g characterizing the
history of a computation. The values �1 and 1 make opposite certainty claims
about an associated property, and the value 0 indicates a lack of certainty about
the property.

3



Trits are elements of decorations. An arithmetic operation on decorated in-
tervals returns a decorated interval whose interval is the result of the operation
on the argument intervals, and whose decorations are computed from the argu-
ments such that they retain the most informative and valid information about
the result.
The total ordering of trits is implied by the fact that one cannot avoid getting

less and less informative decorations if di¤erent decorations are to be combined,
much like overestimation of intervals cannot be avoided in many types of interval
computations. The meaning of the word �informative�depends on the trit. For
example, consider the isDe�ned trit as it propagates through the computation
of (4) depicted in Figure 1 for the intervals X = [1; 3] and Y = [2; 4]:

Operation Result Decoration
[1; 3]� [2; 4] [�3; 1] isDe�ned
sqrt([�3; 1]) [0; 1] possiblyDe�ned
[0; 1]� 2 [�2;�1] possiblyDe�ned
sqrt([�2;�1]) ? notDe�ned
?� [1; 3] ? notDe�ned

In these respects, a tetrit is the same as a trit but with an extra state. Unlike
trits, however, tetrits have a Level 1 de�nition. The following table summarizes
similarities between trits and tetrits:

Priority Tetrit Trit For all x 2 X, the property P is...
3 (T; F ) isDe�ned Everywhere true
2 (T; T ) possiblyDe�ned Somewhere true, somewhere false
1 (F; T ) notDe�ned Everywhere false
0 (F; F ) Nowhere true, nowhere false

The most distinguishing characteristic of a tetrit is that any operation on the
empty set gives the result (F; F ), which has no counterpart in the trit model.
Perhaps this may be a suitable Level 2 representation of the empty set in the
forthcoming standard. This should be given a closer look.

3.1.1 C++ bool_set

Level 2 semantics of tetrits are the same as the multi-valued logic of bool_set
as proposed in [1]. The following table summarizes similarities between tetrits
and bool_set:

Priority Tetrit bool_set For all x 2 X, the property P is...
3 (T; F ) {true} Everywhere true
2 (T; T ) {true,false} Somewhere true, somewhere false
1 (F; T ) {false} Everywhere false
0 (F; F ) {?} Nowhere true, nowhere false

The in�mum of two tetrits is the same as the �&� operation between two
bool_set values as depicted in Table 1 of [1].

4



3.2 Divide and Conquer

Rigorous interval computations often require divide-and-conquer methods. For
example, given the real vector x = (x0; x1) and

g(x) = cos(x0) + sin(x1= exp(x0)) + (x0=x1)
2

f(x) = ln(g(x)),

�nd a subset of X = ([�4; 0]; [1; 5]) so that for all x 2 X in the subset

f(x) � 0

is guaranteed to be true. In particular f(x) 2 R must also be true, to prevent
some catastrophic disaster (such as a missile not hitting its intended target) if
for some reason f(x) is unde�ned. This requires exception-handling semantics
to ensure no f(x) = ? is ever accepted into the solution subset.
The problem can be solved with a divide-and-conquer method, i.e.,

if outsideDomain(f(X 0)) then delete X 0

else if f(X 0) > 0 then delete X 0

else if f(X 0) � 0 then accept X 0

else if eps(X 0) then mark X 0 indeterminate
else bisect X 0

Here X 0 is any sub-box of X and eps(X 0) is a function to determine if X 0 meets
some user-speci�ed tolerance criteria or not. The method begins by initializ-
ing X 0 = X, examining the interval range of f(X 0), and then either deleting
X 0 from the solution, accepting X 0 into the solution, or recursively bisecting
X 0 and repeating the method on each half of the bisection. If an X 0 cannot
be deleted or accepted before the tolerance eps(X 0) is reached, X 0 is marked
indeterminate. The purpose of outsideDomain(f(X 0)) will be explained in the
following discussion.
Assume during this method that g(X 0) = [�1; 0:3] for some X 0. This re-

sults in ln([�1; 0:3]), which is partially outside the natural domain (0;+1) of
the logarithm function. By Motion 8 semantics, the bare interval [�1; 0:3] is
intersected with the natural domain of the logarithm function to obtain

ln([�1; 0:3] \ (0;+1)) = ln((0; 0:3]) = (�1; ln(0:3)].
However, the resulting �domain� tetrit of ln([�1; 0:3]) is (T; T ). The function
outsideDomain(f(X 0)) checks to see if this �domain�tetrit is (F; T ) or worse,
i.e., it returns �true� if any operation in the history of the computation has
been evaluated entirely outside its natural domain or with an empty operand.
In this case, it returns �false,� since ln([�1; 0:3]) is only partially outside the
natural domain. If f(X 0) is evaluated with forgetful operators so that only bare
decorations are returned when exceptions occur, then f(X 0) > 0 and f(X 0) � 0
also return �false.�The consequence is all such f(X 0) will be recursively bisected
until eps(X 0) is �nally true, i.e., none of theseX 0 will be deleted from or accepted
into the solution subset (as expected).

5



In the case g(X 0) = [�1:3;�0:2] for some X 0, however, this results in
ln([�1:3;�0:2]), which is entirely outside the natural domain (0;+1) of the
logarithm function. By Motion 8 semantics, the bare interval [�1:3;�0:2] is
intersected with the natural domain of the logarithm function to obtain

ln([�1:3;�0:2] \ (0;+1)) = ln(?) = ?.

The entire interval box X 0 should therefore be deleted. This indeed happens,
since the resulting �domain�tetrit of ln([�1:3;�0:2]) is (F; T ) and the function
outsideDomain(f(X 0)) returns �true.�The sub-box X 0 is immediately deleted
without any further work or wasted e¤ort.

References

[1] Bronnimann, H. et. al., �Bool_set: multi-valued logic,� http://www.open-
std.org/JTC1/sc22/wg21/docs/papers/2006/n2046.pdf

6


