
IEEE P1788/D9.5, October 2014
IEEE Draft Standard For Interval Arithmetic

nextOut() relaxes the requirement for correct (rather than, say, faithful) rounding, which might be hard to achieve1

for some special functions at some arguments.2

NOTE 3—The input box x might have components of a di↵erent type from the result type T, in the case of 754-3

conforming mixed-type operations 12.6.2. The hullT in (28) forces these to have type T, so each component of x is4

widened by at least the local spacing of F-numbers, at each finite bound.5

[Example. Let T be a 2-digit decimal inf-sup type. Then nextOut widens the T-interval x = [2.4, 3.7] to [2.3, 3.8]—an ulp6

at each end, see ??. But an operation might accept 4-digit decimal inf-sup inputs, and x might be [2.401, 3.699]. Then7

nextOut(x) is [nextDown(2.401), nextUp(3.699)] = [2.4, 3.7], giving an insignificant widening. But8

nextOut(hullT([2.401, 3.699])) = nextOut([2.4, 3.7]) = [2.3, 3.8]

gives a widening comparable with the precision of T.]9

12.10.2. Accuracy requirements10

Following the categories of functions in Table 9.1, the accuracy of the basic operations, the integer func-11

tions and the absmax functions shall be tightest. The accuracy of the cancellative addition and subtraction12

operations of 10.5.6 is specified in 12.12.5.13

For all other operations in Table 9.1, for the reverse mode operations of Table 10.1, and for the recommended14

operations of Table 10.5 and Table 10.6, the accuracy shall be valid, and, for inf-sup types, should be accurate.15

For any operation in these four tables, if any input is Empty the result shall be Empty.16

12.10.3. Documentation requirements17

An implementation shall document the tightness of each of its interval operations for each supported bare18

interval type. This shall be done by dividing the set of possible inputs into disjoint subsets (“ranges”) and19

stating a tightness achieved in each range. This information may be supplemented by further detail, e.g., to20

give accuracy data in a more appropriate way for a non-inf-sup type.21

[Example. Sample tightness information for the sin function might be22

Operation Type Tightness Range

sin infsup binary64 tightest for any x ✓ [�1015, 1015]
accurate for all other x.

23

]24

Each operation should be identified by a language- or implementation-defined name of the Level 1 operation25

(which might di↵er from that used in this standard), its output type, its input type(s) if necessary, and any26

other information needed to resolve ambiguity.27

12.11. Interval and number literals28

12.11.1. Overview29

This subclause extends the specifications of 9.4 to define interval literals in the set-based flavor. Interval30

literals are used as input to textToInterval in 12.12.7, and in Clause 13, Input/Output. The following31

definitions and usages from 9.4 are unchanged: integer literal; value of a literal; valid and invalid string; case32

insensitivity; unit in last place; the possibility of implementation-defined or locale-dependent variations and33

the requirement to document them.34

12.11.2. Number literals35

In addition to those specified in 9.4, the following forms of number literal shall be provided.36

d) Either of the strings inf or infinity optionally preceded by a plus sign, with value +1; or preceded by37

a minus sign, with value �1.38

58
Copyright c� 2014 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788/D9.5, October 2014
IEEE Draft Standard For Interval Arithmetic

Table 12.1. Portable interval literal examples.

Form Literal Exact decorated value
Special [] Empty

trv

[entire] [�1,+1]
dac

Inf-sup [1.e-3, 1.1e-3] [0.001, 0.0011]
com

[-Inf, 2/3] [�1, 2/3]
dac

[0x1.3p-1,] [19/32,+1]
dac

[,] Entire
dac

Uncertain 3.56?1 [3.55, 3.57]
com

3.56?1e2 [355, 357]
com

3.560?2 [3.558, 3.562]
com

3.56? [3.555, 3.565]
com

3.560?2u [3.560, 3.562]
com

-10? [�10.5,�9.5]
com

-10?u [�10.0,�9.5]
com

-10?12 [�22.0, 2.0]
com

-10??u [�10.0,+1]
dac

-10?? [�1,+1]
dac

NaI [nai] Empty
ill

Decorated 3.56?1 def [3.55, 3.57]
def

12.11.3. Bare intervals1

In addition to those specified in 9.4, the following forms of bare interval literal shall be supported. (A) marks2

that a new form of literal is Added; (C) marks an existing form, Changed by adding an extra feature.3

a) Inf-sup form (C): In the string [l , u], the bound l may be �1 and u may be +1. Any of l and u may4

be omitted, with implied values l = �1 and u = +1, respectively, e.g., [,] denotes Entire.5

b) Uncertain form (C): This form, with radius empty or ulp-count, is adequate for narrow (hence bounded)6

intervals, but is severely restricted otherwise. Uncertain form with radius ? is used for unbounded intervals,7

e.g., m??d denotes [�1,m], m??u denotes [m,+1] and m?? denotes Entire with m being like a comment.8

c) Special values (A): The strings [] and [empty], whose bare value is Empty; the string [entire],9

whose bare value is Entire. Here and below, space shown between elements of a literal is optional: it10

denotes zero or more space characters. E.g., one may write [empty] or [empty], etc.11

12.11.4. Decorated intervals12

The following forms of decorated interval literal shall be supported.13

a) A bare interval literal sx.14

If sx has the bare value x, then sx has the value newDec(x), see 11.5. Otherwise sx has no value as a15

decorated interval literal.16

b) A bare interval literal sx, an underscore “_”, and a 3-character decoration string sd; where sd is one of17

trv, def, dac or com, denoting the corresponding decoration dx.18

If sx has the bare value x, and if x
dx

is a permitted combination according to 11.4, then sx_sd has the19

value x

dx

. Otherwise sx_sd has no value as a decorated interval literal.20

c) The string [nai], with the value Empty
ill

.21

[Examples. Table 12.1 illustrates valid portable interval literals. These strings are not valid portable interval literals: empty,22

[5?1], [1 000 000], [ganz], [entire!comment], [inf], 5???u, [nai] ill, [] ill, [] def, [0,inf] com.]23

59
Copyright c� 2014 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788/D9.5, October 2014
IEEE Draft Standard For Interval Arithmetic

Table 12.2. Di↵erences from the general grammar for literals in Table 9.3. In the left
column, ‘A’ marks a new term that is Added, and ‘C’ marks a term that is Changed from
its definition in Table 9.3. The change is always in the form of added alternative(s) on the
right hand side—these are underlined.

A infNumLit {sign} ? ("inf" | "infinity")
C numberLiteral {decNumLit} | {hexNumLit} | {ratNumLit} | {infNumLit}
C radius {natural} | "?"
A emptyIntvl "[" {sp} "]" | "[" {sp} "empty" {sp} "]"
A entireIntvl "[" {sp} "entire" {sp} "]"
A specialIntvl {emptyIntvl} | {entireIntvl}
C bareIntvlLiteral {pointIntvl} | {infSupIntvl} | {uncertIntvl} | {specialIntvl}
A NaI "[" {sp} "nai" {sp} "]"
C decorationLit "trv" | "def" | "dac" | "com"
C intervalLiteral {bareIntvlLiteral} | {bareIntvlLiteral} " " {decorationLit} | {NaI}

12.11.5. Grammar for portable literals24

The syntax of portable integer and number literals and of portable bare and decorated interval literals in this1

flavor is defined by integerLiteral, numberLiteral, bareIntvlLiteral and intervalLiteral, respectively, in a variant2

of the grammar defined in Table 9.3. The di↵erences are shown in Table 12.2.3

The constructor textToInterval (12.12.7, 13.2) of any implementation shall accept any portable interval.4

An implementation may restrict support of some input strings (too long strings or strings with a rational5

number literal). Nevertheless, the constructor shall always return a Level 2 interval (possibly Entire in this6

case) that contains the Level 1 interval.7

An implementation may support interval literals of more general syntax (for example, with underscores in8

significand). In this case there shall be a value of conversion specifier cs that restricts output strings of9

intervalToText 13.3 to the portable syntax.10

12.12. Required operations on bare and decorated intervals11

An implementation shall provide a T-version, see 12.9, of each operation listed in 12.12.1 to 12.12.10, for12

each supported type T. That is, those of the T-version’s inputs and outputs that are intervals are of type13

T (or the corresponding decorated type), except for the conversion operation of 12.12.10 whose output is of14

type T and whose input is of any type.15

The implementation shall provide the type-independent decoration operations of 12.12.11. It shall provide16

the reduction operations of 12.12.12 for the parent formats of supported 754-conforming types.17

Operations in this subclause are described as functions with zero or more input arguments and one return18

value. It is language- or implementation-defined whether they are implemented in this way: for instance,19

two-output division, described in 12.12.3 as a function returning an ordered pair of intervals, might be20

implemented as a procedure mulRevToPair(x,y, z
1

, z

2

) with input arguments x and y and output arguments21

z

1

and z

2

.22

An implementation, or a part thereof, that is 754-conforming shall provide mixed-type operations, as specified23

in 12.6.2, for the following operations, which correspond to those that IEEE Std 754-2008 requires to be24

provided as formatOf operations.25

add, sub, mul, div, recip, sqrt, sqr, fma.26

An implementation may provide more than one version of some operations for a given type. For instance, it27

may provide an “accurate” version in addition to a required “tightest” one, to o↵er a trade-o↵ of accuracy28

versus speed or code size. How such a facility is provided is language- or implementation-defined.29

60
Copyright c� 2014 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

