Algebraic and Relational Concepts for Automated Interval Reasoning

Dominique LOHEZ

Isen-Lille,

Dominique.Lohez@isen.fr *

*Developped as part of a conjoint work with Thales Airborne Systems under Convention n° 114640

OUTLINE

- Problem statement
- Subsets and intervals in a lattice
- Interval reasoning and binary relation algebra
- Results and future works

OUTLINE

- Problem statement
- Subsets and intervals in a lattice
- Interval reasoning and binary relation algebra
- Results and future works

PROBLEM STATEMENT

• Get a further insight into modal intervals

PROBLEM STATEMENT

- Get a further insight into modal intervals
- Handling and Solving quantified interval Equations

PROBLEM STATEMENT

- Get a further insight into modal intervals
- Handling and Solving quantified interval Equations
 - Summary of the needs from an example

THE LOW PASS FILTER EXAMPLE

Two possible views:

• Black box :
$$a = \left| \frac{v_2}{v_1} \right| = f(\omega)$$
 where ω is the pulsation

• Design problems:
$$a = \left| \frac{v_2}{v_1} \right| = h(r, c, \omega)$$

THE LOW PASS FILTER: BLACK BOX VIEW

THE LOW PASS FILTER: BLACK BOX VIEW

Passing/Rejection band $\forall \omega \in \Omega_1 \exists a \in A_1 \ a = f(\omega) \ \forall \omega \in \Omega_3 \exists a \in A_3 \ a = f(\omega)$

THE LOW PASS FILTER: BLACK BOX VIEW

Passing/Rejection band $\forall \omega \in \Omega_1 \exists a \in A_1 \ a = f(\omega) \ \forall \omega \in \Omega_3 \exists a \in A_3 \ a = f(\omega)$

Transition band $\forall a \in A_2 \exists \omega \in \Omega_2 \ a = f(\omega)$

5-b

THE LOW PASS FILTER: DESIGN PROBLEMS

1. Calculate the effects of the components r and c dispersion on the passing band. Given R, C and Ω_1 , find A_1 such that:

$$\forall r \in R \forall c \in C \forall \omega \in \Omega_1 \exists a \in A_1 a = h(r, c, \omega)$$

2. Compensate the effects of the dispersion of the c values by a appropriate choice of r. Given C, A_1 , and Ω_1 , find R such that:

$$\forall c \in C \exists r \in R \forall \omega \in \Omega_1 \exists a \in A_1 a = h(r, c, \omega)$$

SUMMARY OF THE NEEDS

- 1. Solve quantified interval equation
 - Partially addressed by interval arithmetic
 - Partially addressed by (modal) interval arithmetic
 - Fully addressed by binary relation algebra
- 2. Handle interval sets
 - Interval Lattice structure required

OUTLINE

- Problem statement
- Subsets and intervals in a lattice
- Interval reasoning and binary relation algebra
- Results and future works

ORDERED SETS, LATTICES AND INTERVALS

- (Partially) Ordered Set : Pair (S, \leq) .
 - Intervals: Nonempty subsets [a, b] of S. (Interval set I(S)).
 - Problem: Many nonempty subsets are not described by (as) intervals
- Lattice = Ordered set + Algebraic structure
 - Any pair (a, b) has a greatest minorant inf(a, b) or $a \cap b$
 - Any pair (a, b) has a least majorant sup(a, b) or $a \cup b$

ORDERED SETS, LATTICES AND INTERVALS (CONTINUED)

- Finite Lattices
 - Any nonempty subset has a greatest minorant
 - Any nonempty subset has a least majorant
- Infinite lattices: the completion is required
 - Counter example 1: $S_1 = \{x \in \mathbb{Q} | x^2 \le 2\}$
 - Counter example 2: $S_2 = \{x \in \mathbb{R} | x \leq 2\}$

LATTICES AND INTERVAL: DESCRIPTIONS OF SUBSETS

Given a complete lattice (S, \leq) , any nonempty subset S_1 can be described by the following intervals:

- The outer hull $H(S_1) = [\inf(S_1), \sup(S_1)].$
- A "broadening" of any element $x_0 \in S_1$ defined as $W(S_1, x_0) = [\sup(S'_1(S_{1,}, x_0)), \inf(S''_1(S_{1,}, x_0))]$ where $S'_1(S_1, x_0) = \{x \in S | x \notin S_1 \land x \le x_0\}$ and $S''_1(S_1, x_0) = \{x \in S | x \notin S_1 \land x \ge x_0\}$.

AN EXAMPLE: DESCRIPTIONS OF INTERVAL SETS

• Interval [a,b] are subsets of the the incomplete lattice of real numbers (\mathbb{R},\leq)

– No completion to keep the field structure of ${\mathbb R}$

• Order relation \leq_I between intervals defined

 $\leq_{I} = \{([a, b], [c, d]) \in I(\mathbb{R}) | a \leq c \land b \leq d\}$

• The pair $(I(\mathbb{R}), \leq_I)$ define an incomplete lattice.

AN EXAMPLE: THE LATTICE OF INTERVALS(Continued)

- The completion of $(I(\mathbb{R}), \leq_I)$ is achieved by adding the following intervals
 - 1. $[-\infty, -\infty]$ as the infinum of $I(\mathbb{R})$.
 - 2. $[+\infty, +\infty]$ as the supremum of $I(\mathbb{R})$.
 - 3. $[-\infty, b]$ as the infinum of $S_2 = \{[x, b] \in I(\mathbb{R})\}$
 - 4. $[c, +\infty]$ as the supremum of $S_2 = \{[c, x] \in I(\mathbb{R})\}$
 - 5. $[-\infty, +\infty]$ as the supremum of $S_3 = \{[-\infty, b]\}$ and the infinum of $S_4 = \{[c, +\infty]\}$

INTERVAL OF THE SECOND $\underline{K}IND(ISK)$

- The completed lattice can used for interval sets descriptions.
- This involves intervals of intervals (Intervals of the second kind)

$$[A,B] = \{X \in I(\mathbb{R}) | A \leq_I X \leq_I B\}$$

 Most of the ISK can be written as [[a, b], [c, d]] where a, b, c and d are real numbers such that a ≤ b ≤ d ∧ a ≤ c ≤ d. The relative order of band c is unspecified.

SOME REMARKABLE ISK

Example#1: ISK of the form [[a, a], [d, d]]. Given a predicate p(x) such that $\forall x \ x \in [a, d] \supset p(x)$ we have $[[a, a], [d, d]] = \{X \in I(R) | [a, a] \leq_I X \leq_I [d, d] \land (\forall u \ u \in X \supset p(u)) \}$.

- **Example#2:** ISK of the form [[a,b], [c,d]] with $b \le c$. Given a predicate p(x) such that $\forall x \ x \in [b,c] \supset p(x)$ we have $[[a,b], [c,d]] = \{X \in I(R) | [a,a] \le_I X \le_I [d,d] \land (\exists u \ u \in X \land p(u)) \}.$
- **Example#3:** ISK of the form [[a, b], [c, d]] with $c \le b$. Given a predicate p(x) such that $\exists x \ x \in [c, b] \land p(x)$ we have $[[a, b], [c, d]] = \{X \in I(R) | [a, a] \le_I X \le_I [d, d] \land (\exists u \ u \in X \land p(u))\}.$

MODAL ISK AND MODAL INTERVALS

Definition#1: An ISK is said modal if it can written as $[[-\infty, b][c, +\infty]]$.

Definition#2: The inclusion relation between ISK is defined by

$$X \subseteq_{ISK} Y =_{def} \forall x \ x \in X \supset x \in Y$$

Definition#3: A modal interval is an interval [a, b] where the $a \le b$ condition is relaxed.

Definition#4: The modal interval inclusion relation is defined by

$$[a,b] \subseteq_M [c,d] =_{def} a \ge c \land b \le d$$

MODAL ISK AND MODAL INTERVAL(End)

Property#1: The set of modal ISK a complete lattice

Property#2 The set of modal intervals is a complete lattice

Property#3: Both lattices are isomorphic.

Remark#1: ISK generalize modal intervals

Remark#2: In the present context no correspondance can be found between modal intervals and predicate set.

OUTLINE

- Problem statement
- Subsets and intervals in a lattice
- Interval reasoning and binary relation algebra
- Results and future works

INTERVAL REASONING AND BINARY RELATION ALGEBRA

- Three views for Binary Relation Algebra(BRA)
 - Purely abstract algebraic structure
 - Logical framework for reasoning
 - Representation in the real (mathematical!) world

BRA: ALGEBRAIC VIEW

- A BRA is a General algebra $\mathcal{A}(A, \cap, \cup, -, \odot, ^{c}, 0, 1, 1')$ over a set A.
- It includes a finite boolean lattice $\mathcal{A}(SA, \cap, \cup, -, 0, 1)$. This lattice induces an order relation on S.
- Atoms a_i are the minimal elements of $S \setminus \{0\}$. Any element r of S can be written $r = \bigcup_i (r \cap a_i)$.
- The algebra is completly defined given the values of the atomic expressions $(a_i \odot a_j) \cap a_k$.

BRA:LOGICAL VIEW

One defines a bijection between the algebraic expressions/equations and logical formulas/theorems

- To each algebraic a_i one associates some predicate $a_i(x, y)$ symbol with arity 2
- To each algebraic expression one associates a logical formula including at most three variables
- To each algebraic equation one associates a theorem *in a three variables logic*.

BRA: LOGICAL VIEW(Illustrations)

Example#1 We have $\in^c \odot p \iff \exists z \ z \in x \land p(z,y)$

Example#2 We have $-(\in^c \odot(-p)) \iff \forall z \ z \in x \supset p(z,y)$

Counterexample: The infinum lattice condition

 $\forall x \forall y \exists z ((z \leq x \land z \leq y) \land (\forall u (u \leq x \land u \leq y) \supset u \leq z))$

has no algebraic correspondant since it involves four variables.

BRA: LOGICAL VIEW(Question)

The logical formulas involved in the low pass filter are similar to

$$\forall c \in C \exists r \in R \forall \omega \in \Omega_1 \exists a \in A_1 a = h(r, c, \omega)$$

This formula involve eight variables. Can we write this formula as a three variables formula? The answer is yes. This can be shown using the third BRA (representation) view.

BRA: REPRESENTATION VIEW

Given a set S and an equivalence relation $\mathbf{1}_S$ over S

- The set $R(1_S)$ of the binary relations over S included in 1_S composed with the usual relation operations sastisfy the BRA axioms.
- A representation of an abstract algebra $\mathcal{A}(S, \cap, \cup, -, \odot, ^{c}, \mathbf{0}, \mathbf{1}, \mathbf{1'})$ over $\mathbf{1}_{S}$ is a subalgebra of $R(\mathbf{1}_{S})$ isomorphic to $\mathcal{A}(S, \cap, \cup, -, \odot, ^{c}, \mathbf{0}, \mathbf{1}, \mathbf{1'})$.

BRA: REPRESENTATION VIEW : (Continued)

- The relation algebra generated over $I(\mathbb{R})$ by the relation \in is a representation of some abstract BRA A
- This algebra can represented over the set of interval n-uples by n representations corresponding to each component. This give rise the n different relations $\in^{(1)} \ldots \in^{(n)}$.
- This allows working with interval n-uples instead of interval. A carefull analysis show that only three variables are needed.

OUTLINE

- Problem statement
- Subsets and intervals in a lattice
- Interval reasoning and binary relation algebra
- Results and future works

INTERVAL REASONING

- We have elaborated a very general framework for interval reasoning
- Within this framework we can retrieve the results using modal interval analysis.
- This results can be generalized within the same framework

INTEREST AND WEAKNESS

- The main interest of our approach lies into the use of declarative reasoning rather arithmetic.
- The main veakness is the use of a function table. This difficulty shoud be overcome for rational functions by:
 - 1. Use of a analytic expression of the function
 - 2. Use of interval quantified table for some primitive functions (addition, product, ..)