IEEE Std P1788
Ch2 IEEE Standard For Interval Arithmetic 88.8

8.8. The decoration system.

8.8.1. Decorations and decorated intervals overview. The decoration system of the set-based
flavor conforms to the principles of Clause 6.1. An implementation makes the decoration system
available by providing:

— a decorated version of each interval extension of an arithmetic operation, of each interval con-
structor, and of some other operations;

— various auxiliary functions, e.g., to extract a decorated interval’s interval and decoration parts,
and to apply a standard initial decoration to an interval.

The system is specified here at a mathematical level, with the finite-precision aspects in §9.13.
§8.8.2, 8.8.3, 8.8.4 give the basic concepts. §8.8.5, 8.8.6 define how intervals are given an initial
decoration, and how decorations are bound to library interval operations to give correct propagation
through expressions. §8.8.7 lists operations that do not propagate decorations. §8.8.8 discusses the
decoration of user-defined arithmetic operations. §8.8.9 specifies the sixth decoration com, which is
required in a multi-flavor implementation. §8.8.10 defines a restricted decorated interval arithmetic
that suffices for some important applications and is easier to implement efficiently.

In Annex B, Clause 14 gives examples of the meaning and use of decorations; and Clause 17
contains a rigorous theoretical foundation, including a proof of the Fundamental Theorem of Dec-
orated Interval Arithmetic for this flavor.

8.8.2. Definitions and basic properties. Formally, a decoration d is a property pq(f,) of pairs
(f,x), where f is a real-valued function with domain Dom(f) C R™ for some n > 0 and « € IR"
is an n-dimensional box, regarded as a subset of R™. The notation (f,«) unless said otherwise
denotes such a pair, for arbitrary n, f and . Equivalently and more usually, d is identified with
the set of pairs for which the property holds:

d={(f,x) | pa(f,x) is true }. (13)
This standard provides a set D of either five or six decorations. The basic five are:

Value | Short description Property | Definition

dac | defined & continuous | pgac(f;) | @ is a nonempty subset of Dom(f), and the
restriction of f to « is continuous;

def defined Paes (f,) | « is a nonempty subset of Dom(f); (14)
trv | trivial Perv(fi@) | always true (so gives no information);

emp empty Penp(f>x) | N Dom(f) is empty;

ill ill-formed pinn(f,) | Dom(f) is empty.

These are listed according to the propagation order (24), which may also be thought of as a
quality-order of (f,x) pairs—decorations above trv are “good” and those below are “bad”. The
sixth decoration com (§8.8.9), if provided, lies at the top of the list as the “best” decoration of the
set.

A decorated interval is a pair, written interchangeably as (u, d) or ug, where u € IR is a real
interval and d € I is a decoration. (u,d) may also denote a decorated box ((u1,d1),.. ., (Un,dy)),
where u and d are the vectors of interval parts uw; and decoration parts d;, respectively. The set
of decorated intervals is denoted by DIR, and the set of decorated boxes with n components is
denoted by DIR".

When several named intervals are involved, the decorations attached to u,wv,... are often
named du, dv, ... for readability, for instance (u, du) or wug.,, etc.

An interval or decoration may be called a bare interval or decoration, to emphasize that it is
not a decorated interval.

Treating the decorations as sets as in (13), trv is the set of all (f,x) pairs, and the others are
nonempty subsets of trv. By design they satisfy the exclusivity rule

For any two decorations, either one contains the other or they are disjoint. (15)
Namely the definitions (14) give:

dac C def C trv D emp D ill, note the change from C to D; (16)
dac and def are disjoint from emp and ill. (17)

33 December 21, 2012

IEEE Std P1788
Ch2 IEEE Standard For Interval Arithmetic 88.8

Hence for any (f,x) there is a unique smallest (in the containment order (16)), decoration
such that pg(f,) is true, called the strongest decoration of (f,x), or of f over x, and written
dec(f,x). That is:

dec(f,x) =d <= pa(f,x) holds, but p.(f,x) fails for all e C d. (18)

8.8.3. Ill-formed intervals. The “ill-formed” decoration i11 propagates unconditionally through
arithmetic expressions. Namely, the decorated interval result of a library arithmetic operation is
ill-formed (decorated with i11) if and only if one of its inputs is ill-formed.

Tll-formed decorated intervals result from an invalid constructor call and also may be produced

in any context where an implementation determines, statically or dynamically, that it is to do
interval-evaluation of an expression that, as a point function, is nowhere-defined. An ill-formed
decorated interval may also be called Nal, Not an Interval. Generally, an implementation behaves
as if there is only one Nal, whose interval part is empty, i.e. Nal = (;;;. An exception is that
other information may be stored in an Nal, in an implementation-defined way, and functions may
be provided for a user to interrogate this for diagnostic purposes.
[Examples. The constructor call nums2interval(2,1) is invalid in this flavor, so its decorated version
returns Nal. A compiler might determine that the constant expression [1,1]/[0,0] comes from the
undefined constant (zero-argument point function) 1/0, so that it returns Nal. With more work, a
compiler might determine that interval-evaluation of \/—1 — x2 should give Nal, for any input interval,
because it is everywhere undefined as a real point function.)

8.8.4. Permitted combinations. A decorated interval y,, shall always be such that y 2 Rge(f|x)
and pgy (f,) holds, for some (f, x) as in §8.8.2—informally, it must tell the truth about some con-
ceivable evaluation of a function over a box. If dy = dac or def then by definition & is nonempty,
and f is everywhere defined on it, so that Rge(f | «) is nonempty, implying y is nonempty. Hence
the decorated intervals (3. and (g are contradictory: implementations shall not produce them.

No other combinations are essentially forbidden. However it is a consequence of a Level 2
requirement that the result y,, of a constructor or a library arithmetic operation has dy = emp
or i1l if and only if y is empty. Thus 0y, and Yemp OF Yerp With nonempty y, are not generated
by arithmetic expressions when initialized according to §8.8.5 and evaluated according to §8.8.6.
However, they may be created by other means.

8.8.5. Initial decoration. Correct use of decorations when evaluating an expression has two
parts: correctly initialize the input intervals; and evaluate using decorated interval extensions
of library operations. To provide correct initialization, the function newDec() is provided. For
a single bare interval @, newDec() decorates it with dec(Id,), the strongest decoration dz that
makes pg, (Id,) true, where Id is the identity function Id(x) = x for real . That is,

dac if x is nonempty,

emp if x is empty, (19)

newDec(x) = x4 where d = dec(Id, x) = {
see §8.8.9 for the change to this if the com decoration is provided. For an already decorated interval
&4, newDec() discards the decoration and acts on the interval part,

newDec(z4,) = newDec(x). (20)

For a vector of n bare or decorated intervals, newDec() acts componentwise to give a vector of n
decorated intervals.

In this document a bare interval constant, in a context that expects a decorated interval,
is implicitly promoted to a decorated interval by applying the newDec function. Whether an
implementation provides such promotion at the program level is language-defined.

[Example. () is promoted to newDec(()) = Denp, and [1,+400] to newDec([1, +00]) = [1, +00]dac, while
[1,2] is promoted to [1,2]4ac if com is not supported, but [1,2]con if it is.]

8.8.6. Decorations and arithmetic operations. Given a scalar point function ¢ of k variables,
a decorated interval extension of y—denoted here by the same name p—adds a decoration
component to a bare interval extension of ¢. It is also called a decorated version of that bare
interval extension. It has the form wg, = p(v4y), where vy, = (v, dv) is a k-component decorated
box ((v1,dvy),. .., (vg,dvg)). By the definition of a bare interval extension, the interval part w
depends only on the input intervals v; the decoration part dw generally depends on both v and
dv.

34 December 21, 2012

IEEE Std P1788
Ch2 IEEE Standard For Interval Arithmetic 88.8

The definition of a bare interval extension implies

w 2 Ree(¢|v), (enclosure). (21)
o determines a dvgy such that

Dduw, (@, v) holds, (a “local decoration”). (22)
It then evaluates the output decoration dw by

dw = min{dvg, dvy, ... ,dvs}, (the “min-rule”), (23)
where the minimum is taken with respect to the propagation order:

dac > def > trv > emp > ill. (24)

[Notes.
1. Let f(21,...,2,) be an expression defining a real point function f(x1,...,x,). Then decorated

interval evaluation of f on a correctly initialized input decorated box x4, gives a decorated interval
Yay Such that not only, by the Fundamental Theorem of Interval Arithmetic, one has

y 2 Rge(f|x) (25)
but also

Pay(f,) holds. (26)

For instance, if the computed dy equals def then f is proven to be everywhere defined on the box
. This is the Fundamental Theorem of Decorated Interval Arithmetic (FTDIA). The
rules for initializing and propagating decorations are key to its validity. They are justified, and a
formal statement and proof of the FTDIA given, in Annex B.

Briefly, (29) gives the correct result for the simplest expression of all, where f is the identity
f(z) = x, which contains no arithmetic operations. The decorations are designed so that the
min-rule (23) embodies basic facts of set theory and analysis, such as “If each of a set of functions
is everywhere defined [resp. continuous], their composition has the same property” and “If any of
a set of functions is nowhere defined, their composition has the same property”. It causes correct
propagation of decorations through each arithmetic operation, and hence through a whole expression.

2. In the same way as the enclosure requirement (21) is compatible with many bare interval extensions,
typically coming from different interval types at Level 2, so there may be several dvy satisfying the
local decoration requirement (22). The ideal choice is the strongest decoration d such that pa(p,v)
holds, that is to take

dvg = dec(p, v). (27)

This is easily computable in finite precision for the arithmetic operations in §8.6, 8.7—see the tables
in Annex B, Clause 13. However, functions may be added to the library in future for which (27) is
impractical to compute for some arguments v. Hence the weaker requirement (22) is made.

]

8.8.7. Operations that do not propagate decorations.
The following are not interval extensions of point functions:

— The reverse-mode operations of §8.6.4.

The cancellative operations cancelPlus(x,y) and cancelMinus(z,y) of §8.6.5.

— The set-oriented operations intersection(x,y) and convexHull(x,y) of §8.6.6.

— The numeric functions of §8.6.8; the comparisons and other boolean-valued functions of §8.6.9;
and the overlap function of §8.7.2.

The decorated interval version of each such operation takes decorated interval inputs and gives
the result obtained by discarding the decorations and applying the corresponding bare interval
operation. Users are responsible for decorating this result, where relevant, as may be appropriate
for an application.

An implementation may provide other versions of the operations that compute a bare interval
result as above, and add a decoration suited to a particular application. How this is done is
language- or implementation-defined.

In particular, to simplify defining functions piecewise, an implementation may define additional
operations:

35 December 21, 2012

Ch2

IEEE Std P1788
IEEE Standard For Interval Arithmetic 88.8

intersectionDec(Zds;Yq,) is as intersection(®qs, Y,y), except that it deco-
rates the result with max(dz, dy).

convexHullDec(Tdy, Ygqy) 15 as convexHull(x gy, Y,), except that it deco-
rates the result with min(dz, dy).

A language may make either the standard operations, or these operations, its default operations
for intersection and convexHull.
8.8.8. User-supplied functions. A user may define a decorated interval extension of some point

function,

as defined in §8.8.6, to be used within expressions as if it were a library operation.

[Examples.

(1)

(2

In an application, an interval extension of the function
fle)=z+1/z

was required. As it stands it gives unnecessarily pessimistic enclosures: e.g., with x = [%, 2],
one obtains

f@) =132+ /3.2 =[3.2+[32 =14,
much wider than Rge(f |x) = [2,21].

Thus it is useful to code a tight interval extension by special methods, e.g. monotonicity
arguments, and provide this as a new library function. Suppose this has been done. To convert
it to a decorated interval extension just entails adding code to provide a local decoration and
combine this with the input decoration by the min-rule (23). In this case it is straightforward
to compute the strongest local decoration d = dec(f,x), as follows.

emp ifx =10 orxz=]0,0],
d=1< trv if0e€x#]0,0],
dac if0 ¢ x # 0.

The next example shows how an expert may ma- 4
nipulate decorations explicitly to give a function,

defined piecewise by different formulas in different 3r
regions of its domain, the best possible decoration.

Suppose that 2r
1 L
@) = fi(z) = x2—4 if|z| > 2, 0
| fo(m) := =4 — 22 otherwise, Al

. -2 ‘ ‘

see the diagram. -4 -2 0 2

The function consists of three pieces, on regions x < —2, —2 < x < 2 and x > 2, that join
continuously at region boundaries, but the standard gives no way to determine this continuity,
at run time or otherwise. For instance, if f is implemented by the case function, the continu-
ity information is lost when evaluating it on, say, * = [1, 3|, where both branches contribute
for different values of x € x.

However, a user-defined decorated interval function as defined below provides the best
possible decorations.

function y,, = f(®dx)

w= @ 2)

v = fo(zN[-2,2])

w = fi(@ N2, +o0])

Yy = convexHull(convexHull(u,v), w)
dy = dx

36 December 21, 2012

IEEE Std P1788
Ch2 IEEE Standard For Interval Arithmetic 88.8

The user’s knowledge that f is everywhere defined and continuous is expressed by the state-
ment dy = dx, propagating the input decoration unchanged. f, thus defined, can safely be
used within a larger decorated interval evaluation.

]

8.8.9. The com decoration. A multi-flavor implementation shall, and other implementations
may, provide the sixth decoration com (see §6.3 in Chapter 1), namely:

Value | Short description | Property | Definition

com common Peon(fs) | x is a bounded, nonempty subset of Dom(f); (28)
f is continuous at each point of x; and the
computed interval f() is bounded.

Its position in the containment and propagation orders is given by

com C dac C def C trv D emp D ill,
com > dac > def > trv > emp > ill.

Including com causes the following changes to the decoration system:

— The strongest decoration of the identity function, dec(Id,) now equals com when x is bounded
and nonempty.

— Hence the newDec function gives the decoration com instead of dac to a bounded, nonempty
interval, namely

com if x is bounded and nonempty,
newDec(x) = x4 where d=dec(ld,z)=(def if « is unbounded, (29)
emp if @ is empty.

— Each arithmetic operation gives com as its local decoration if the conditions (28) are satisfied.

The propagation rule specified by (21, 22, 23) is unchanged. Note that minor changes are needed
to the first example in §8.8.8.

[Note. The com decoration describes both a Level 1 and a Level 2 property. When f is a library
arithmetic operation @, the computed interval @(x) means the enclosure of Rge(p |x) computed by
a particular Level 2 interval extension of p, giving a result of some interval type T. Thus peon(,)
indicates a finite-precision evaluation that is common in the flavor sense, giving a bounded enclosure
of the range.

When f is a function defined by an expression, the computed interval f(x) means the enclosure
y of Rge(f | x) produced by interval evaluation of the expression at Level 2. Evaluation need not use
Jjust one interval type T: any combination of supported types is permitted. If the final y is decorated
with com, it follows from the propagation rules that the whole evaluation was common. That is, the
final enclosure of the range is bounded, as were all the intermediate intervals. In addition, the function
[is everywhere continuous on the bounded, nonempty input box x. |

8.8.10. Compressed arithmetic with a threshold (informative).

The compressed decorated interval arithmetic (compressed arithmetic for short) de-
scribed here lets experienced users obtain more efficient execution in applications where the use of
decorations is limited to the context described below. An implementation need not provide it; if
it does so, the behavior described in this subclause is required.

Each Level 2 instance of compressed arithmetic is based on a supported Level 2 bare interval
type T, but is a distinct compressed type derived from its parent type T, with its own objects
and library of operations. Conversions are provided between a compressed type and its parent
type.

Compressed arithmetic uses the standard set of 5 or 6 decorations (14). The context is that,
frequently, the use that is made of a decorated interval function evaluation y,, = f(x4z) depends
on a check of the result decoration dy against an application-dependent exception threshold 7,
where 7 > trv in the propagation order (24):

dy > 7 represents normal computation. The decoration is not used, but one exploits the range
enclosure given by the interval part and the knowledge that dy remained > 7.

dy < 7 declares an exception to have occurred. The interval part is not used, but one exploits
the information given by the decoration.

37 December 21, 2012

IEEE Std P1788
Ch2 IEEE Standard For Interval Arithmetic 88.8

For such uses, one needs to store an interval’s value, or its decoration, but never both at once.
A compressed interval is an object whose value is either an arbitrary bare interval (of the parent
type), or an arbitrary bare decoration, with the exception that the empty interval is not used: the
decoration emp or i1l is used instead.

At Level 2, different thresholds generate different compressed interval types. That is, if T

is a parent type for compressed arithmetic, there shall be separate compressed interval types T
for each threshold value 7 > trv. The only way to use compressed arithmetic with a particular
threshold 7 is to construct T, -intervals, that is, objects of type T,.
[Note. Since, for any practical interval type T, a decoration fits into less space than an interval, one can
implement arithmetic on “compressed interval” objects that take up the same space as a bare interval
of that type. For instance if T is the IEEE754 binary64 inf-sup type, a compressed interval uses 16
bytes, the same as a bare T-interval; a full decorated T-interval needs at least 17 bytes.

Because compressed intervals must behave exactly like bare intervals as long as one does not
fall below the threshold, and take up the same space, there is no room to encode T as part of the
interval’s value. “Mixed threshold” operations, combining compressed intervals of the same parent
type and different threshold values, can be done in effect by first converting the input operands to the
destination type, as described below. It is the user’s responsibility to ensure that this is valid in the
context of the application.]

The enquiry function isInterval(x) returns true if the compressed interval @ is an interval,
false if it is a decoration.

The constructor 7-compressedInterval() is provided for each threshold value 7. The result
of 7-compressedInterval(X), where X = (x,dx) is a decorated interval of the parent type, is a
T ,-interval as follows:

if dr > 7, return the T,-interval with value «
else return the T,-interval with value dzx.

T-compressedInterval(x) for a bare interval & is equivalent to T-compressedInterval(newDec(x)).
The function normalInterval(x) converts a T, -interval to a decorated interval of the parent
type, as follows:

if ® is an interval, return (z,7).
if x is a decoration d
if d is ill or emp, return (Empty,d)
else return (Entire,d).

Conversion of a T,-interval to T .-interval shall be equivalent to first converting to a normal dec-
orated interval by normalInterval(), and then to the destination type by 7-compressedInterval(X).
Such conversions need not be provided as single operations.

Arithmetic operations on compressed intervals derive from normal decorated interval opera-
tions. The behavior depends on the threshold, which the user, or potentially the implementation,
can choose to fit the use made of the result. The results are determined by worst case semantics
rules that treat a bare decoration as representing a set of decorated intervals. These follow neces-
sarily if the fundamental theorem is to remain valid. Each operation returns an actual or implied
decoration compatible with its input, so that in an extended evaluation, the final decoration using
compressed arithmetic is never stronger than that produced by full decorated interval arithmetic.

(a) Operations purely on bare intervals are performed as if each x is the decorated interval .,
resulting in a decorated interval y,, that is then converted back into a compressed interval. If
dy < 7, the result is the bare decoration dy, otherwise the bare interval y.

(b) For arithmetic operations with at least one bare decoration input, the result is always a
bare decoration. A bare decoration d in {emp,ill} is treated as (3. A bare decoration d
in {trv,def,dac,com} is treated (conceptually, not algorithmically) as an arbitrary &, with
nonempty interval @ that is compatible with d: for d in {trv,def,dac}, x is unrestricted,
while for d = com, x is bounded. A bare interval is treated as in item (a). Performing the
resulting decorated interval operation on all such possible inputs leads to a set of all possible
results y,,. The tightest decoration (in the containment order (16)) enclosing all resulting dy
is returned.

38 December 21, 2012

IEEE Std P1788
Ch2 IEEE Standard For Interval Arithmetic 88.8

Since there are only a few decorations, one can prepare complete operation tables according to
these rules, and only these tables need to be implemented. Sample tables for a number of operations
are given in §16 in Annex B, together with some worked examples of compressed arithmetic.

If compressed arithmetic is implemented, it shall provide versions of all the required operations
of §8.6, and it should provide the recommended operations of §8.7.

/N It needs to be decided how numeric functions such as midpoint work on a compressed interval
when it is a decoration. Also comparisons.
[Note. ?? An alternative view on compressed intervals is to regard them as a flavor. When the threshold
T is com, they conform to the requirements of a flavor: they extend classical interval arithmetic, and
one can tell when an arithmetic expression evaluation has failed to be common, because the result is a
decoration instead of an interval. However, if T < com this is no longer so.]

39 December 21, 2012

