
Section 9.7 Multiple precision arithmetics 351

Computation of the scalar product of the two vectors X D .xk/ and Y D .yk/ is
just the accumulation of all the products in (9.7.4) for k from 1 to n:

X � Y D
nX

kD1

xk � yk D
nX

kD1

nxX

iD1

nyX

jD1

xki � ykj .

This shows that the scalar product of the two multiple precision vectorsX and Y can
be computed by accumulating products of floating-point numbers in a single complete
variable cv. The result is a multiple precision number z D Pnz

iD1 zi . It is obtained by
conversion of the complete register contents into the multiple precision number z by:

for i := 1 to nz do
zi := chop.cv/
cv:= cv � zi

Similar considerations hold for the computation of two multiple precision matrices
or for the computation of the defect of a system of linear equations with multiple
precision data. Of course, the formulas for these computations are getting more and
more complicated. But the user does not have to be concerned with these. By operator
overloading the work is done by the computer automatically.

The key operation for all these processes is a fast and exact scalar product. Quadru-
ple precision arithmetic is not a substitute for it.

At several occasions in this section rounding towards zero is applied where rounding
to nearest could have been used instead. The reason for this is that rounding towards
zero is simpler and faster in general than rounding to nearest.

9.7.2 Multiple precision interval arithmetic

Definition 9.8. Let xi , i D 1.1/n, n 
 0, be floating-point numbers and X D
Œxlow, xhigh� an interval with floating-point bounds xlow and xhigh. Then an element
of the form

x D
nX

iD1

xi CX (9.7.5)

is called a long interval of length n. The xi are called the components of x and X is
called the interval component. �

In (9.7.5) n is permitted to be zero. Then the sum in (9.7.5) is empty and x D X is
just an interval with standard floating-point bounds.

In the representation (9.7.5) of a long interval it is desirable that the components
do not overlap. The following operations for long intervals are written so that they
produce results with this property.

Arithmetic operations for long intervals are defined as usual in interval arithmetic:



352 Chapter 9 Sample applications

Definition 9.9. Let x and y be long intervals, then

x ı y :D f� ı �j� 2 x ^ � 2 yg, for ı 2 fC, �, �, =g,

with 0 … y for ı D =. �

Of course, in general, this theoretical result is not representable on the computer.
Here the result must be a long interval again. We do not, however, require that it is the
least enclosing long interval of some prescribed length. But we must require that the
computed long interval z is a superset of the result defined in Definition 9.9: xıy � z.
Not to require optimality of the result gives room for a compromise between tightness
of the enclosure and the efficiency of the implementation.

Negation.

�x D
nxX

iD1

.�xi /C Œ�xhigh, �xlow�.

Let now x, y, and z be three long intervals:

x D
nxX

iD1

xi C Œxlow, xhigh�, y D
nyX

iD1

yi C Œylow,yhigh�, z D
nzX

iD1

zi C Œzlow, zhigh�.

Addition and subtraction of two long intervals x and y simply add and subtract the
lower and higher bounds of x and y into two complete registers which we call lo and
hi. Their contents finally have to be converted into a long interval z. This conversion
routine will be discussed after the description of the operations of addition and subtrac-
tion. In the following algorithms the symbols C, �, and � again denote the operations
for real numbers.

Addition.

hi :D
nxX

iD1

xi C
nyX

iD1

yi

lo :D hi C xlow C ylow

hi :D hi C xhigh C yhigh

z :D convert.lo,hi ,nz /.

Subtraction.

hi :D
nxX

iD1

xi �
nyX

iD1

yi

lo :D hi C xlow � yhigh

hi :D hi C xhigh � ylow

z :D convert.lo,hi ,nz /.



Section 9.7 Multiple precision arithmetics 353

Conversion.

convert.lo,hi ,nz/
stop :D false
i :D 0
repeat i :D i C 1
zlow :D chop.lo/
zhigh :D chop.hi/
if zlow D zhigh then zi :D zlow

lo :D lo � zi
hi :D hi � zi

else zi :D 0
stop :D true

until stop or i D nz
for i :D i C 1 to nz do zi :D 0
zlow :D 5lo
zhigh :D 4hi

This routine reads successive numbers zlow and zhigh from the complete registers
and, as long as they are equal and the length nz has not yet been reached, they are
assigned to zi and subtracted from the complete registers. If zlow and zhigh are different
or the length nz for the result z is reached, then the remaining values in the complete
registers are converted to the interval component Z of z by appropriate rounding. If
some of the zi are not yet defined, they are set to zero.

The conversion routine has the property that the real components of z do not overlap.

Multiplication. Multiplication can be implemented in various ways yielding different
results because of the subdistributivity law of interval arithmetic. Thus we have:

x � y D
� nxX

iD1

xi CX

�� nyX

jD1

yj C Y

�

�
nxX

iD1

nyX

jD1

xi � yj CX

nyX

jD1

yj C Y

nxX

iD1

xi CXY (9.7.6)

�
nxX

iD1

nyX

jD1

xi � yj C
nyX

jD1

Xyj C
nxX

iD1

Yxi CXY . (9.7.7)

This seems to suggest that better results can be obtained from using the second line
in (9.7.6) than from the third line. However, to compute the products X

Pny

iD1 yi and
Y
Pnx

iD1 xi we first have to round the sums to machine intervals. As a consequence
of these additional roundings, the second line in (9.7.6) yields coarser enclosures than
the third line. Therefore, we use line three for the multiplication algorithm.



354 Chapter 9 Sample applications

Again, lo and hi are two complete registers, xi , yi are reals, X , Y are intervals, and
z is the resulting long interval. The multiplication routine is as follows:

lo :D
nxX

iD1

nyX

jD1

xi � yj

hi :D lo

Œlo, hi� :D Œlo, hi�C
nyX

jD1

Xyj C
nxX

iD1

Yxi CX � Y

z :D convert.lo, hi,nz/.

Here again all accumulations in lo and hi are to be done without any intermediate
roundings.

Division. For division, again an iterative algorithm is applied. It computes the nz real
components zi of the quotient x=y successively.

To compute the approximation
Pnz

iD1 zi , we start with

z1 :D m.x/ / m.y/.

Herem.x/ andm.y/ represent points selected within x and y respectively, the mid-
points for instance. The rounding to a floating-point number by the rounding towards
zero is denoted by and / means floating-point division.

Now the components zi , i D 1.1/nz of z are computed by the same formula as for
a long real arithmetic:

zkC1 :D
� nxX

iD1

xi �
nyX

iD1

kX

jD1

yizj

�
/ . m.y//. (9.7.8)

Here the numerator is computed exactly in a complete register and then rounded to-
wards zero into a floating-point number. Finally a floating-point division is performed.

This iteration again guarantees that the zi do not overlap.
Now the interval componentZ of the result z is computed as

Z :D }
� nxX

iD1

xi �
nyX

iD1

nzX

jD1

yizj CX �
nzX

jD1

Yzj

�
}= .}y/, (9.7.9)

where } denotes the rounding to a floating-point interval and }= denotes the division
of two floating-point intervals.

It is not difficult to see that z D Pnz

iD1 zi C Z is a superset of the exact range
f� ı � j � 2 x ^ � 2 yg. For ˛ 2 X and ˇ 2 Y we have the identity

Pnx

i xi C ˛
Pny

i yi C ˇ
D

nzX

j

zj C
Pnx

i xi C ˛ �Pny

i

Pnz

j yizj �Pnz

j zjˇ
Pny

i yi C ˇ
.



Section 9.7 Multiple precision arithmetics 355

An interval evaluation of this expression for ˛ 2 X and ˇ 2 Y shows immediately
that the exact range x=y is contained in

Pnz

iD1 zi C Z as computed by (9.7.8) and
(9.7.9).

This leads to the following algorithm. Therein xi , yi , zi , and ym are floating-point
reals, X , Y , and Z are floating-point intervals. Rounding towards zero into a floating-
point number is denoted by and } denotes the rounding to a floating-point interval.

lo :D Pnx

iD1 xi

my :D m.y/

z1 :D . lo/ / my

for k :D 2 to nz do
lo :D lo �Pny

iD1 yizk�1

zk :D . lo/ / my

lo :D lo �Pny

iD1 yiznz

hi :D lo
Z :D } .Œlo, hi�CX �Pnz

iD1 Yzi/}= .}y/.
In this algorithm the double sum in (9.7.8) and (9.7.9) is accumulated in the com-

plete register lo as long as the zk are computed. The final value in lo is then used in the
computation of the interval partZ. Thus the amount of work is reduced to a minimum.

Scalar Product. We leave it to the reader to derive formulas for the computation of
the scalar product of two vectors with long interval components. We mention, how-
ever, that this is not necessary at all. By operator overloading the computer solves this
problem automatically. What is needed are two complete registers and a fast and exact
scalar product for floating-point numbers.

Square Root. An algorithm for the square root can be obtained analogously as in the
case of division. It computes the zi , i D 1.1/nz of the approximation part iteratively:

z1 :D
q

x,

zkC1 :D
� nxX

iD1

xi �
kX

i ,jD1

zizj

�
=.2z1/. (9.7.10)

This guarantees that the zi do not overlap since in the numerator of (9.7.10) the
defect of the approximation

Pnz

iD1 zi is computed with one rounding only. Now the
interval part Z is computed as

Z :D }�Pnx

iD1 xi �Pnz

i ,jD1 zizj CX
�

p
}x C } Pnz

iD1 zi

. (9.7.11)



356 Chapter 9 Sample applications

As in the case of division, it is easy to see that
Pnz

iD1 ziCZ as computed by (9.7.10)
and (9.7.11) is a superset of the exact range fp� j � 2 xg; in fact, for all � 2 X we
have the identity:

vuut
nxX

iD1

xi C � D
nzX

jD1

zj C
Pnx

iD1 xi C � �Pnz

i ,jD1 zizjqPnx

iD1 xi C � CPnz

jD1 zj

. (9.7.12)

This leads to the following algorithm for the computation of the square root:

lo :D Pnx

iD1 xi

z1 :D
p

lo
for k :D 2 to nz do

lo :D lo � 2
Pk�2
jD1 zj zk�1 � zk�1zk�1

zk :D . lo/=.2z1/

lo :D lo � 2
Pnz�1
jD1 zj znz

� znz
znz

hi :D lo

Z :D } .Œlo, hi�CX/=.
p

}x C } Pnz

jD1 zj /.

To allow easy application of the long interval arithmetic just described a few addi-
tional operations should be supplied such as computation of the infimum, the supre-
mum, the diameter, and the midpoint. Also elementary functions can be and have been
implemented for long intervals. They may already make use of the arithmetic for long
intervals.

9.7.3 Applications

We now briefly sketch a few applications of multiple precision interval arithmetic. We
restrict the discussion to problem classes which have already been dealt with in this
chapter. We assume that the floating-point inputs to an algorithm are exact. Imprecise
data should be brought into the computer as intervals as accurately as possible, possibly
as long intervals. It should be clear that in such a case the result is a set, and if the
algorithm is unstable, this set may well be large. Even the best arithmetic can only
compute bounds for this set. These bounds may not look very accurate even if they
may be so.

Among the first problems that have been solved to very high and guaranteed ac-
curacy were systems of linear equations by S. M. Rump [557]. The method was then
continually extended to other problem classes. We consider a system of linear equa-
tions A � x D b. Let x1 be an approximate solution and e1 :D x� � x1 be the error to
the exact solution x�. Then e1 is the solution of the system

A � e1 D b � Ax1. (9.7.13)



Section 9.7 Multiple precision arithmetics 357

If we compute an interval enclosureX1 of e1, we have an enclosure of x� by a long
interval: x� 2 x1 C X1. This method can now be iterated. With a new approximate
solution x2 :D m.x1 CX1/, where m denotes the midpoint of the interval x1 CX1, a
second error e2 can be computed by

A � e2 D b � Ax2.

An enclosure X2 of e2 leads to a new enclosure of x�:

x� 2 x2 CX2.

Essential for success of this method is the fact that the defect b � A � xi of the
approximate solution xi can be computed to full accuracy by the exact scalar product.

This method of iterated defect correction can also be applied to compute with very
high accuracy enclosures of arithmetic expressions or of polynomials. An enclosure
of the solution is obtained as a long interval.

The methods just discussed can also be applied to problems where the initial data
themselves are long intervals. See [423].

The method for the evaluation of polynomials with long interval coefficients allows
additional applications. It can be applied, for instance, to evaluate higher dimensional
polynomials and to represent the result as a long interval. To avoid too many indices
we sketch the method for the two-dimensional case. The independent variables are
denoted by x and y. Let the polynomial of degree n in x andm in y be

p.x,y/ D
mX

jD0

nX

iD0

aij x
iyj D

mX

jD0

� nX

iD0

aijx
i

�
yj .

Its value can be obtained by successively computing the values of the m C 2 one-
dimensional polynomials

bj :D bj .x/ :D
nX

iD0

aijx
i , j D 0.1/m, (9.7.14)

and

p.x,y/ :D
mX

jD0

bjy
j . (9.7.15)

The results of the computation (9.7.14) are long intervals. The final result in (9.7.15)
is also a long interval. It may be rounded into a floating-point interval if desired.

Long interval arithmetic has also been very successfully applied to the computation
of orbits of discrete dynamic systems. It is well known that such computations are
highly unstable if the system exhibits chaotic behavior. In this case even for very sim-
ple systems ordinary floating-point arithmetic delivers results which are completely
wrong. Also ordinary interval arithmetic (i.e., intervals of floating-point numbers)


