
IEEE P1788.1/D9.7, May 2016
IEEE Draft Standard for Interval Arithmetic (Simplified)

6. Level 2 description1

6.1 Introduction2

Entities and operations at Level 2 are said to have finite precision. From them, implementable interval3

algorithms may be constructed. Level 2 entities are called datums4.4

6.1.1 Interval type5

The interval type, denoted by T, is the inf-sup type derived from the IEEE 754 binary64 format; we refer6

to the latter as b64. This interval type comprises all intervals whose endpoints are b64 numbers, together7

with Empty. Since ±∞ are in b64, Entire is in T.8

An interval from T is also called a bare interval or a T-interval. We use the term T-datum to refer to an9

entity that can be a T-interval or a NaI. A T-box is a vector with T-datum components.10

6.1.2 Decorated interval type11

The decorated interval type, derived from T, is the set of tuples (x, d), where x ∈ T, and d ∈ D. We denote12

this type by DT.13

DT shall contain a “Not an Interval” datum NaI, which is identified with (∅, ill).14

6.1.3 Operations15

The term T-version of a Level 1 operation denotes one in which any input or output that is an interval is a16

T-datum. For bare interval types this includes the following.17

– An interval extension (see 6.4) of one of the arithmetic operations of 4.5.18

– A set operation, such as intersection and convex hull of T-intervals, returning a T-interval.19

– A function such as the midpoint, whose input is a T-interval and output is numeric.20

– A constructor, whose input is numeric or text and output is a T-datum.21

6.1.4 Exception behavior22

For some operations, and some particular inputs, there might not be a valid result. At Level 1 there are23

several cases when no value exists. However, a Level 2 operation always returns a value. When the Level 124

result does not exist, the corresponding Level 2 operation returns either25

– a special value indicating this event (e.g., NaN for most of the numeric functions in 6.7.6); or26

– a value considered reasonable in practice. For example, mid(Entire) returns 0; a constructor given invalid27

input returns Empty; and one of the comparisons of 6.7.7, if any input is NaI, returns false.28

If intervalPart() is called with NaI as input, the exception IntvlPartOfNaI is signaled (see 6.7.8).29

If a bare or decorated constructor fails (see 6.7.5) the exception UndefinedOperation is signaled.30

If a bare or decorated constructor succeeds on a accuracy-relaxed string argument (see 6.7.5) the exception31

PossiblyUndefinedOperation may be signaled.32

6.2 Naming conventions for operations33

An operation is generally given a name that suits the context. For example, the addition of two interval34

datums x,y may be written in generic algebra notation x+y; or with a generic text name add(x,y).35

4Not “data”, whose common meaning could cause confusion.

18
Copyright c� 2016 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788.1/D9.7, May 2016
IEEE Draft Standard for Interval Arithmetic (Simplified)

6.3 Level 2 hull operation1

6.3.1 Hull in one dimension2

The interval hull operation3

y = hull(s),

maps an arbitrary set of reals s to the tightest interval y enclosing s.4

6.3.2 Hull in n dimensions5

In n dimensions the hull, as defined mathematically in 6.3.1, is extended to act componentwise. That is, for6

an arbitrary subset s of Rn it is hull(s) = (y1, . . . ,yn), where7

yi = hull(si),

and si = { si | s ∈ s } is the projection of s on the ith coordinate dimension.8

6.4 Level 2 interval extensions9

Let f be an n-variable scalar point function. A T-interval extension of f , also called a T-version of f , is a
mapping f from n-dimensional T-boxes to T-intervals, that is f : Tn → T, such that f(x) ∈ f(x) whenever
x ∈ x and f(x) is defined. Equivalently

f(x) ⊇ Rge(f |x),
for any T-box x ∈ Tn, regarding x as a subset of Rn. Generically, such mappings are called Level 2 interval10

extensions.11

6.5 Accuracy of operations12

This subclause describes requirements and recommendations on the accuracy of operations. Here, operation13

denotes any Level 2 version, provided by the implementation, of a Level 1 operation with interval output and14

at least one interval input. Bare interval operations are described; the accuracy of a decorated operation is15

defined to be that of its interval part.16

6.5.1 Measures of accuracy17

Three accuracy modes are defined that indicate the quality of interval enclosure achieved by an operation:18

tightest, accurate and valid in order from strongest to weakest.19

The term tightness means the strongest mode that holds uniformly for some set of evaluations. For example,20

for some one-argument function, an implementation might document the tightness of f(x) as being tightest21

for all x contained in [−1015, 1015] and at least accurate for all other x.22

Let f exact denote the corresponding Level 1 operation. The weakest mode valid is just the property of
enclosure:

f(x) ⊇ f exact(x). (11)

The strongest mode tightest is the property that f(x) equals f tightest(x), the hull of the Level 1 result:

f tightest(x) = hull
�
f exact(x)

�
. (12)

The intermediate mode accurate asserts that f(x) is valid, (11), and is at most slightly wider than the result
of applying the tightest version to a slightly wider input box:

f(x) ⊆ nextOut
�
f tightest

�
nextOut

�
hull(x)

���
. (13)

For an interval x,

nextOut(x) =

�
[nextDown(x), nextUp(x)] if x = [x, x] �= ∅,

∅ if x = ∅,
where nextUp and nextDown are equivalent to the corresponding functions in IEEE 754.23

19
Copyright c� 2016 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788.1/D9.7, May 2016
IEEE Draft Standard for Interval Arithmetic (Simplified)

When x is an interval box, nextOut acts componentwise.1

NOTE—In (13), the inner nextOut() aims to handle the problem of a function such as sinx evaluated at a very large2

argument, where a small relative change in the input can produce a large relative change in the result. The outer3

nextOut() relaxes the requirement for correct (rather than, say, faithful) rounding, which might be hard to achieve4

for some special functions at some arguments.5

6.5.2 Accuracy requirements6

Following the categories of functions in Table 4.1, the accuracy of the basic operations, the integer func-7

tions and the absmax functions shall be tightest. The accuracy of the cancellative addition and subtraction8

operations of 4.5.3 is specified in 6.7.3.9

For all other operations in Table 4.1, the accuracy should be accurate.10

6.5.3 Documentation requirements11

An implementation shall document the tightness of each of its interval operations. This shall be done by12

dividing the set of possible inputs into disjoint subsets (“ranges”) and stating a tightness achieved in each13

range.14

[Example. Sample tightness information for the sin function might be15

Operation Tightness Range

sin
tightest for any x ⊆ [−1015, 1015]

accurate for all other x.

16

]17

Each operation should be identified by a language- or implementation-defined name of the Level 1 operation18

(which might differ from that used in this standard), its output type, its input type(s) if necessary, and any19

other information needed to resolve ambiguity.20

6.6 Number and interval literals21

6.6.1 Number literals22

The following forms of number literal shall be provided.23

a) A decimal number. This comprises an optional sign, a nonempty sequence of decimal digits optionally24

containing a point, and an optional exponent field comprising e and an integer literal.5 The value of a25

decimal number is the value of the sequence of decimal digits with optional point multiplied by ten raised26

to the power of the value of the integer literal, negated if there is a leading - sign.27

b) A number in the hexadecimal-floating-constant form of the C99 standard (ISO/IEC9899, N1256 (6.4.4.2)),28

equivalently hexadecimal-significand form of IEEE Std 754-2008 (5.12.3). This comprises an optional sign,29

the string 0x, a nonempty sequence of hexadecimal digits optionally containing a point, and an exponent30

field comprising p and an integer literal exponent. The value of a hexadecimal number is the value of the31

sequence of hexadecimal digits with optional point multiplied by two raised to the power of the value of32

the exponent, negated if there is a leading minus sign.33

c) A rational literal p / q. This comprises an integer literal p, the / character, and a positive-natural literal34

q. Its value is the value of p divided by the value of q.35

d) Either of the strings inf or infinity optionally preceded by +, with value +∞; or preceded by -, with36

value −∞.37

5An integer literal comprises an optional sign and followed by a nonempty sequence of decimal digits.

20
Copyright c� 2016 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788.1/D9.7, May 2016
IEEE Draft Standard for Interval Arithmetic (Simplified)

6.6.2 Bare intervals1

The following forms of bare interval literal shall be supported. Below, the number literals l and r are identified2

with their values. Space shown between elements of a literal denotes zero or more space characters.3

– A string [l , u] where l and u are optional number literals of the same radix (10 or 16) with l ≤ u,4

l < +∞ and u > −∞, see 4.2. Its bare value is the mathematical interval [l, u]. Any of l and u may be5

omitted, with implied values l = −∞ and u = +∞, respectively; e.g. [,] denotes Entire.6

A string [x] is equivalent to [x , x].7

– Uncertain form: a string m ? r v E where: m is a decimal number literal of form a in 6.6.1, without8

exponent; r is empty or is a natural-number literal ulp-count or is ?; v is empty or is a direction character,9

either u (up) or d (down); and E is empty or is an exponent field comprising the character e followed by10

an integer literal exponent e. No whitespace is permitted within the string.11

With ulp meaning 10−d where d is the number of digits after the decimal point in m (or 0 if there is no12

decimal point), the literal m? by itself denotes m with a symmetrical uncertainty of half an ulp, that is13

the interval [m − 1
2ulp,m + 1

2ulp]. The literal m?r denotes m with a symmetrical uncertainty of r ulps,14

that is [m− r× ulp,m+ r× ulp]. Adding d (down) or u (up) converts this to uncertainty in one direction15

only, e.g., m?d denotes [m− 1
2ulp,m] and m?ru denotes [m,m+ r × ulp]. Uncertain form with radius ?16

is for unbounded intervals, e.g., m??d denotes [−∞,m]. The exponent field if present multiplies the whole17

interval by 10e, e.g., m ?ru ee denotes 10e × [m,m+ r × ulp].18

– Special values: the strings [] and [empty], whose bare value is Empty, and the string [entire], whose19

bare value is Entire.20

6.6.3 Decorated intervals21

The following forms of decorated interval literal shall be supported.22

– sx_sd: a bare interval literal sx, an underscore “_”, and a 3-character decoration string sd, where sd is23

one of trv, def, dac or com, denoting the corresponding decoration dx.24

If sx has the bare value x, and if xdx is a permitted combination according to 5.4, then sx_sd has the25

value xdx. Otherwise sx_sd has no value as a decorated interval literal.26

– The string [nai], with the bare value Empty and the decorated value Emptyill.27

The alphanumeric characters in the above literals are case-insensitive (e.g., [1,1e3]_com is equivalent to28

[1,1E3]_COM).29

6.7 Required operations30

Operations in this subclause are described as functions with zero or more input arguments and one return31

value. It is language-defined whether they are implemented in this way.32

6.7.1 Interval constants33

There shall be functions empty() and entire() returning an interval with value Empty and Entire, respec-
tively. There shall also be a decorated version of each, returning

newDec(Empty) = Emptytrv and newDec(Entire) = Entiredac,

respectively.34

6.7.2 Elementary functions35

An implementation shall provide an interval version of each arithmetic operation in Table 4.1. Its inputs36

and output are intervals, and it shall be a Level 2 interval extension of the corresponding point function.37

Recommended accuracies are given in 6.5.38

NOTE—For operations, some of whose arguments are of integer type, such as integer power pown(x, p), only the real39

arguments are replaced by intervals.40

21
Copyright c� 2016 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788.1/D9.7, May 2016
IEEE Draft Standard for Interval Arithmetic (Simplified)

Each such operation shall have a decorated version with corresponding arguments of type DT. It shall be a1

decorated interval extension as defined in 5.6—thus the interval part of its output is the same as if the bare2

interval operation were applied to the interval parts of its inputs.3

The only freedom of choice in the decorated version is how the local decoration, denoted dv0 in (9) of 5.6,4

is computed. dv0 shall be the strongest possible (and is thus uniquely defined), if the accuracy mode of the5

corresponding bare interval operation is “tightest”, but otherwise is only required to obey (9).6

6.7.3 Cancellative addition and subtraction7

An implementation shall provide a T-version of each of the operations cancelMinus and cancelPlus in 4.5.3.8

Their inputs and output are T-intervals.9

cancelMinus(x,y) shall return Empty in the first case of (2), the hull of the result in the second, and Entire10

for each of the cases in (3).11

cancelPlus(x,y) shall be equivalent to cancelMinus(x,−y).12

These operations shall have “trivial” decorated versions, as described in 5.7.13

6.7.4 Set operations14

An implementation shall provide an interval version of each of the operations intersection and convexHull15

in 4.5.4. Its inputs and output are intervals. These operations should return the interval hull of the exact16

result. If either input to intersection is Empty, or both inputs to convexHull are Empty, the result shall17

be Empty.18

These operations shall have “trivial” decorated versions, as described in 5.7.19

6.7.5 Constructors20

For the bare and decorated interval types there shall be a constructor. It returns a T- or DT-datum,21

respectively.22

Bare interval constructors. A bare interval constructor call either succeeds or fails. This notion is used to23

determine the value returned by the corresponding decorated interval constructor.24

For the constructor numsToInterval(l, u), the inputs l and u are b64 datums. If neither l nor u is NaN, and25

l ≤ u, l < +∞, u > −∞, the result is [l,u]. Otherwise the call fails, and the result is Empty.26

For the constructor textToInterval(s), the input s is a string. The string of form [l , u] where l < +∞27

and u > −∞ are optional number literals is called accuracy-relaxed if either one of the literals is a rational28

number literal of form c in 6.6.1 or one of them is a decimal number literal of form a in 6.6.1 and another is29

a hexadecimal number literal of form b in 6.6.1.30

– If s is a valid interval literal with Level 1 value x and s is not accuracy-relaxed, the result shall be the hull31

of x (the constructor succeeds).32

– If s is not a valid interval interval and s is not accuracy-relaxed, this constructor fails, and the result is33

Empty.34

– If s is accuracy-relaxed and l ≤ u, the result may be any interval containing [l,u] (the constructor35

succeeds).36

– If s is accuracy-relaxed and l > u, the result may be either any interval containing [u,l] (the constructor37

succeeds), or Empty (the constructor fails).38

Decorated interval constructors. Let the prefix b- or d- denote the bare or decorated version of a constructor.39

If b-numsToInterval(l, u) or b-textToInterval(s) succeeds with result y, then d-numsToInterval(l, u) or40

d-textToInterval(s), respectively, succeeds with result y and decoration newDec(y), see 5.5.41

22
Copyright c� 2016 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788.1/D9.7, May 2016
IEEE Draft Standard for Interval Arithmetic (Simplified)

If s is a decorated interval literal sx sd with Level 1 value xdx, see 6.6.3, and b-textToInterval(sx) succeeds1

with result y, then d-textToInterval(s) succeeds with result ydy, where dy = dx except when dx = com2

and overflow has occurred, that is, x is bounded and y is unbounded. Then dy shall equal dac.3

Otherwise the call fails, and the result is NaI.4

Exception behavior. Exception UndefinedOperation is signaled by both the bare and the decorated con-5

structor when the input is such that the bare constructor fails.6

Exception PossiblyUndefinedOperation is signaled by both the bare and the decorated textToInterval(s)7

constructor with accuracy-relaxed s8

– when l > u and interval constructor succeeds;9

– when l ≤ u and the result is wider than the hull of [l,u];10

– optionally when l ≤ u and the result is the hull of [l,u].11

NOTE—When signaled by the decorated constructor it will normally be ignored since returning NaI gives sufficient12

information.13

NOTE—If the textToInterval(s) constructor doesn’t signal exception then s is a valid interval literal and the result14

is the hull of Level 1 value of s.15

NOTE—The behavior of the textToInterval(s) constructor is implementation-dependent when s is accuracy-relaxed.16

The least accurate implementation simply returns Entire and signals PossiblyUndefinedOperation. The most ac-17

curate implementation fails with UndefinedOperation exception when l > u and returns the hull of [l,u] without18

exception otherwise.19

6.7.6 Numeric functions of intervals20

An implementation shall provide a T-version of each numeric function in Table 4.3 of 4.5.6 giving a result21

in b64. The mapping of a Level 1 value to a b64 number is defined in terms of the following rounding22

methods:23

Round toward positive: x maps to the smallest b64 number not less than x; 0 maps to +0.24

Round toward negative: x maps to the largest b64 number not greater than x; 0 maps to −0.25

Round to nearest: x maps to the b64 number (possibly ±∞) closest to x as defined by IEEE 754-2008;26

0 maps to +0.27

NOTE—These functions help define operations of the standard but are not themselves operations of the stan-28

dard.29

A Level 1 value of 0 shall be returned as −0 by inf, and +0 by all other functions in this subclause.30

inf(x) returns the Level 1 value rounded toward negative.31

sup(x) returns the Level 1 value rounded toward positive.32

mid(x): the result is defined by the following cases, where x, x are the exact (Level 1) lower and upper33

bounds of x:34

x = Empty NaN

x = Entire 0

x = −∞, x finite the finite negative b64 number of largest magnitude

x finite, x = +∞ the finite positive b64 number of largest magnitude

x, x both finite the Level 1 value rounded to nearest

The implementation shall document how it handles the last case.35

rad(x) returns NaN if x is empty, and otherwise the smallest b64 number r such that x is contained in the36

exact interval [m− r,m+ r], where m is the value returned by mid(x).37

23
Copyright c� 2016 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1788.1/D9.7, May 2016
IEEE Draft Standard for Interval Arithmetic (Simplified)

wid(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward positive.1

mag(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward positive.2

mig(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward negative, except3

that 0 maps to +0.4

Each bare interval operation in this subclause shall have a decorated version, where each input of bare interval5

type is replaced by one of the corresponding decorated interval type, and the result format is that of the6

bare operation. Following 5.7, if any input is NaI, the result is NaN. Otherwise the result is obtained by7

discarding the decoration and applying the corresponding bare interval operation.8

6.7.7 Boolean functions of intervals9

An implementation shall provide the functions10

– isEmpty(x) and isEntire(x) in 4.5.7,11

– the functions implementing the comparison relations in Table 4.5 of 4.5.7, and12

– the function isNaI(x) for input x of any decorated type, which returns true if x is NaI, else false.13

Each bare interval operation in this subclause shall have a decorated version. Following 5.7, if any input14

is NaI, the result is false (in particular equal(NaI,NaI) is false). Otherwise the result is obtained by15

discarding the decoration and applying the corresponding bare interval operation.16

6.7.8 Operations on/with decorations17

An implementation shall provide the operations of 5.5. These comprise the comparison operations =, �=, >,18

<, ≥, ≤ for decorations; and, for the decorated type, the operations newDec, intervalPart, decorationPart19

and setDec.20

A call intervalPart(NaI), whose value is undefined at Level 1, shall return Empty at Level 2, and shall21

signal the IntvlPartOfNaI exception to indicate that a valid interval has been created from the ill-formed22

interval.23

24
Copyright c� 2016 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

